\begin{equation}\label{eq:14}
\begin{split}
\Pi&=\Pi_{2n}+\Pi_{2l}+\Pi_{2h}\\&= \bigg[
\begin{split}
&q_{2 n} \left(-\alpha A_0 \beta k \left(1-s_{2 h}\right)-(1-\alpha ) A_0 k \left(1-s_{2 l}\right)-c_n-c_{\text{nature}}-k q_{2 n}+\delta _m\right)\\&+\alpha A_0 \beta \left(1-s_{2 h}\right) \left(-(1-\alpha ) A_0 k \lambda _h \left(1-s_{2 l}\right)-\alpha A_0 \beta k \lambda _h \left(1-s_{2 h}\right)-c_h-k \lambda _h q_{2 n}+\lambda _h \delta _m-s_{2 h}\right)\\&+(1-\alpha ) A_0 \left(1-s_{2 l}\right) \left(-\alpha A_0 \beta k \left(1-s_{2 h}\right) \lambda _l-(1-\alpha ) A_0 k \lambda _l \left(1-s_{2 l}\right)-c_l-k \lambda _l q_{2 n}+\lambda _l \delta _m-s_{2 l}\right)
\end{split}
\bigg]
\end{split}
\end{equation}
如下所示,“[]”太小了……
答案1
您可以像使用一样生成任意大小的分隔符\left
,但在这里我可能会采用另一种方式,根本不使用括号
\documentclass{article}
\usepackage{amsmath}
\begin{document}
\begin{multline}\label{eq:zz}%dont use numbers
\Pi=\Pi_{2n}+\Pi_{2l}+\Pi_{2h}\\
= \begin{aligned}[t]
&q_{2 n} (-\alpha A_0 \beta k (1-s_{2 h})-(1-\alpha ) A_0 k (1-s_{2 l})\\
&\qquad{}-c_n-c_{\mathrm{nature}}-k q_{2 n}+\delta _m)\\
&\qquad{}+\alpha A_0 \beta (1-s_{2 h}) (-(1-\alpha ) A_0 k \lambda _h (1-s_{2 l})\\
&\qquad{} -\alpha A_0 \beta k \lambda _h (1-s_{2 h})-c_h-k \lambda _h q_{2 n}+\lambda _h \delta _m-s_{2 h})\\
&\qquad{}+(1-\alpha ) A_0 (1-s_{2 l}) (-\alpha A_0 \beta k (1-s_{2 h}) \lambda _l\\
&\qquad{}-(1-\alpha ) A_0 k \lambda _l (1-s_{2 l})-c_l-k \lambda _l q_{2 n}+\lambda _l \delta _m-s_{2 l})
\end{aligned}
\end{multline}
\end{document}
请注意,如果您确实使用固定大小,则始终使用\biggl(
和而\biggr)
不是\bigg(
和\bigg)
以确保正确的 mathopen 和 mathclose 间距。
答案2
我提出了一种变体布局,结合了flalign
和:aligned
alignedat
\documentclass{article}
\usepackage{mathtools}
\begin{document}
\begin{flalign}\label{eq:zz}%dont use numbers
& \begin{alignedat}{2}
\Pi & =\mathrlap{\Pi_{2n}+\Pi_{2l}+\Pi_{2h}}\\
& = q_{2 n} \bigl(\mkern-4mu&& -\alpha A_0 \beta k (1-s_{2 h})-\mathrlap{(1-\alpha ) A_0 k (1-s_{2 l})-c_n-c_{\mathrm{nature}}-k q_{2 n}+\delta _m\bigr)}\\
& & \mathrlap{\begin{aligned}[t] {} +\alpha A_0 \beta (1-s_{2 h}) \bigl(-(1-\alpha ) A_0 k \lambda _h (1 -s_{2 l}) -\alpha A_0 \beta k \lambda _h (1-s_{2 h})\\
{}-c_h-k \lambda _h q_{2 n}+\lambda _h \delta _m-s_{2 h}\bigr)
\end{aligned}}\\
& & \mathrlap{\begin{aligned}[t] {} +(1-\alpha ) A_0 (1-s_{2 l})\bigl (-\alpha A_0 \beta k (1-s_{2 h}) \lambda _l-(1-\alpha ) A_0 k \lambda _l (1-s_{2 l})\\
{}-c_l-k \lambda _l q_{2 n}+\lambda _l \delta _m -s_{2 l}\bigr)%
\end{aligned}}\\
\end{alignedat} & &
\end{flalign}
\end{document}