在使用优秀的希尼奇包中,我注意到内联表达式的一部分超出了页边距。恢复到传统的数字表示,我仍然观察到表达式的一部分超出了右边距。这是一个 MWE:
\documentclass[11pt]{article}
\usepackage[letterpaper]{geometry}
\usepackage{showframe}
\geometry{verbose,tmargin=1.25in,bmargin=1.25in,lmargin=1.4in,rmargin=1.15in}
\usepackage[nodisplayskipstretch,doublespacing]{setspace}
\setstretch{1.5}
\usepackage{siunitx} % All the SI unit nomenclature
\sisetup{per=slash, load=abbr, output-complex-root = j, complex-root-position = before-number}
\newcommand{\E}{\varepsilon} % epsilon
\begin{document}
Next, we consider the lossy case where the permittivity of metal layers is $\E_m = \num{-143.4967 - j 9.5173}$ and the compared results are shown in Figure 1 and listed in Table xyz.
Next, we consider the lossy case where the permittivity of metal layers is $\E_m = -143.4967 - j 9.5173$ and the compared results are shown in Figure 1 and listed in Table xyz.
\end{document}
编译结果为:
我希望内联表达式尊重页边距。
答案1
只需添加microtype
包即可自动纠正此问题:
\documentclass[11pt]{article}
\usepackage[letterpaper]{geometry}
\usepackage{showframe}
\geometry{verbose,tmargin=1.25in,bmargin=1.25in,lmargin=1.4in,rmargin=1.15in}
\usepackage[nodisplayskipstretch,doublespacing]{setspace}
\setstretch{1.5}
\usepackage{microtype} % <======
\usepackage{siunitx} % All the SI unit nomenclature
\sisetup{per=slash, load=abbr, output-complex-root = j, complex-root-position = before-number}
\newcommand{\E}{\varepsilon} % epsilon
\begin{document}
Next, we consider the lossy case where the permittivity of metal layers is $\E_m = \num{-143.4967 - j 9.5173}$ and the compared results are shown in Figure 1 and listed in Table xyz.
Next, we consider the lossy case where the permittivity of metal layers is $\E_m = -143.4967 - j 9.5173$ and the compared results are shown in Figure 1 and listed in Table xyz.
\end{document}
答案2
“sloppypar”也解决了这个问题
\begin{sloppypar}Next, we consider the lossy case where the permittivity of metal layers is $\E_m = \num{-143.4967 - j 9.5173}$ and the compared results are shown in Figure 1 and listed in Table xyz.
\结束{sloppypar}
答案3
\allowbreak 对我来说很管用。例如:$a = x+y\allowbreak (z-1)$。