我正在尝试将表格脚注与表格对齐。但是,我没有成功。以下是我的代码。我还附上了捕获的文件。有人能帮我解决这个问题吗?
\begin{table}
\caption{Unconditional moments of consumption and assets} \label{Tab2}
\vspace{0.3in}
\begin{spacing}{0.8}
{\footnotesize Table 2 presents the annualized consumption and asset moments for different models with different settings. Target values for the consumption and asset moments are obtained by the U.S. data from 1960 to 2015. To estimate the model-implied the consumption and asset moments, 1,000 sample paths of the model are simulated. Each path consists of 600 monthly frequency. The mean value of each moment is calculated across time and paths. Model 1 is the simplest representative agent model without labor income. Model 2 is the representative agent model with labor income. Model 3 is the homogeneous multiple agents model with labor income. Model 4 is the heterogeneous agents model with labor income but without short-selling constraint. Finally, the base model mainly analyzed in this paper is the heterogeneous agents with labor income and short-selling constraint.}
\end{spacing}
\vspace{0.3in}
\begin{threeparttable}
\resizebox{6.5in}{!}{
\begin{tabular}{lcccccccc}
\T \B Input/Moment & & & U.S. data & \multicolumn{5}{c}{Model} \\
\cline{5-9}
\T \B & & & & Model 1 & Model 2 & Model 3 & Model 4 & Base \\ \cline{1-9} \\ [-1.5ex]
\multicolumn{9}{l}{\textbf{Panel A: Model input and specification}} \\
\T $\#$ of agents $N$ & & & & 1 & 1 & 50 & 50 & 50 \\
$[\gamma_1, \ \gamma_N]$ & & & & 20.5\tnote{1} & 20.5 & 20.5 & [1, 40] & [1, 40] \\
Labor income & & & & No & Yes & Yes & Yes & Yes \\
\B Constraint & & & & No & No & No & No & Yes \\
\\
\multicolumn{9}{l}{\textbf{Panel B: Consumption moments}} \\
\T Aggregate consumption growth mean & & & 0.0180 & 0.05 & 0.0137 & 0.0137 & 0.0138 & 0.0138 \\
\B Aggregate consumption growth st. dev. & & & 0.0137 & 0.09 & 0.0305 & 0.0305 & 0.0307 & 0.0307 \\ \\
\multicolumn{9}{l}{\textbf{Panel C: Asset returns moments}} \\
\T Equity excess return mean & & & 0.0617 & 0.1661\tnote{2} & 0.05 & 0.0471 & 0.0245 & 0.0235 \\
Equity excess return st. dev. & & & 0.1525 & 0.0900 & 0.2516 & 0.2371 & 0.2246 & 0.2196 \\
Sharpe ratio & & & 0.4048 & 1.8450 & 0.1986 & 0.1986 & 0.1090 & 0.1071 \\
Risk-free rate mean & & & 0.0145 & -0.6600 & 0.3607 & 0.3607 & 0.2304 & 0.2312 \\
Risk-free rate st. dev. & & & 0.0266 & 0 & 0.0009 & 0.0008 & 0.0011 & 0.0012 \\
\B $Corr(dR_t,\frac{d\sum_{i=1}^{N}C_{i,t}^*}{\sum_{i=1}^{N}C_{i,t}^*})$ & & & 0.1921 & 1 & 0.0502 & 0.0473 & 0.0481 & 0.0473 \\ \hline
\end{tabular}%
}
\begin{tablenotes}
\footnotesize
\item[1] 20.5 is chosen as the average of [1,40]
\item[2] If the moments of aggregate consumption growth (0.018, 0.0137) are used, the asset moments from excess returns mean to risk-free rate mean are 0.0039, 0.0137, 0.2817, and 0.4271, respectively.
\end{tablenotes}
\end{threeparttable}
\end{table}
\clearpage
答案1
这里有一个解决方案,没有\resizebox
,但booktabs
有在规则周围有一些垂直填充。不知道做什么\B
,\T
我中和了它们:
\documentclass{article}
\usepackage{geometry}
\usepackage{tabularx, threeparttable, booktabs, multirow}
\usepackage{amsmath, setspace}
\DeclareMathOperator{\corr}{Corr}
\newcommand\T{\relax}
\newcommand\B{\relax}
\begin{document}
\begin{table}
\caption{Unconditional moments of consumption and assets} \label{Tab2}
\vspace{3ex}
\begin{spacing}{0.8}\footnotesize
\footnotesize Table 2 presents the annualized consumption and asset moments for different models with different settings. Target values for the consumption and asset moments are obtained by the U.S. data from 1960 to 2015. To estimate the model-implied the consumption and asset moments, 1,000 sample paths of the model are simulated. Each path consists of 600 monthly frequency. The mean value of each moment is calculated across time and paths. Model 1 is the simplest representative agent model without labor income. Model 2 is the representative agent model with labor income. Model 3 is the homogeneous multiple agents model with labor income. Model 4 is the heterogeneous agents model with labor income but without short-selling constraint. Finally, the base model mainly analyzed in this paper is the heterogeneous agents with labor income and short-selling constraint.
\end{spacing}
\vspace{4ex}
\begin{threeparttable}
\begin{tabularx}{\linewidth}{@{}X*{7}{c}}
\multirow{2}{*}{\T \B Input/Moment} & \multirow{2}{*}{U.S. data} & \multicolumn{5}{c}{Model} \\
\cmidrule[\lightrulewidth](lr){3-7}
\T \B & & Model 1 & Model 2 & Model 3 & Model 4 & Base \\
\midrule
\multicolumn{7}{@{}l}{\textbf{Panel A: Model input and specification}} \\
\addlinespace[0.8ex]
\T $\#$ of agents $N$ & & 1 & 1 & 50 & 50 & 50 \\
$[\gamma₁, \ \gamma_N]$ & & 20.5\tnote{1} & 20.5 & 20.5 & [1, 40] & [1, 40] \\
Labor income & & No & Yes & Yes & Yes & Yes \\
\B Constraint & & No & No & No & No & Yes \\
\\
\multicolumn{7}{@{}l}{\textbf{Panel B: Consumption moments}} \\
\addlinespace[0.8ex]
\T Aggregate consumption growth mean & 0.0180 & 0.05 & 0.0137 & 0.0137 & 0.0138 & 0.0138 \\
\B Aggregate consumption growth st. dev. & 0.0137 & 0.09 & 0.0305 & 0.0305 & 0.0307 & 0.0307 \\ \\
\multicolumn{7}{@{}l}{\textbf{Panel C: Asset returns moments}} \\
\addlinespace[0.8ex]
\T Equity excess return mean & 0.0617 & 0.1661\tnote{2} & 0.05 & 0.0471 & 0.0245 & 0.0235 \\
Equity excess return st. dev. & 0.1525 & 0.0900 & 0.2516 & 0.2371 & 0.2246 & 0.2196 \\
Sharpe ratio & 0.4048 & 1.8450 & 0.1986 & 0.1986 & 0.1090 & 0.1071 \\
Risk-free rate mean & 0.0145 & -0.6600 & 0.3607 & 0.3607 & 0.2304 & 0.2312 \\
Risk-free rate st. dev. & 0.0266 & 0 & 0.0009 & 0.0008 & 0.0011 & 0.0012 \\
\B $\corr\Bigl(dR_t,\frac{d∑_{i=1}^{N}C_{i,t}^*}{∑_{i=1}^{N}C_{i,t}^*}\Bigr)$ & 0.1921 & 1 & 0.0502 & 0.0473 & 0.0481 & 0.0473 \\
\bottomrule
\end{tabularx}%
\begin{tablenotes}
\footnotesize\smallskip
\item[1] 20.5 is chosen as the average of [1,40]
\item[2] If the moments of aggregate consumption growth (0.018, 0.0137) are used, the asset moments from excess returns mean to risk-free rate mean are 0.0039, 0.0137, 0.2817, and 0.4271, respectively.
\end{tablenotes}
\end{threeparttable}
\end{table}
\clearpage
\end{document}