我正在使用以下环境,并希望在 = 符号处对齐前两个、后两个和第三两个方程。此时所有内容都在同一点对齐,但这样,例如最后一个方程就太靠左了。您有什么建议?将其拆分为三个对齐环境没有帮助,因为这样方程之间的间隔会太大。
\begin{align}
Cov\left(\tilde{c}_D,\tilde{r}_M\right) &= \sum_{i=1}^4f_i\left(c_{D,i}-E(\tilde{c}_D)\right)\left(r_{M,i}-E(\tilde{r}_M)\right),\\
Cov\left(\tilde{c}_E,\tilde{r}_M\right) &= \sum_{i=1}^4f_i\left(c_{E,i}-E(\tilde{c}_E)\right)\left(r_{M,i}-E(\tilde{r}_M)\right),\\
V_D &= \frac{E(\tilde{c}_D) - \left( E\left(\tilde{r}_M\right) - r_f\right)\frac{Cov\left(\tilde{c}_D,\tilde{r}_M\right)}{\sigma_{\tilde{r}_M}^2}}{1+r_f},\\
V_U &= \frac{E(\tilde{c}_E) - \left( E\left(\tilde{r}_M\right) - r_f\right)\frac{Cov\left(\tilde{c}_E,\tilde{r}_M\right)}{\sigma_{\tilde{r}_M}^2}}{1+r_f},\\
\mu_D &= \frac{E(\tilde{c}_D)}{V_D} - 1 \text{~und~}\\
\mu_E &= \frac{E(\tilde{c}_E)}{V_E} - 1.
\end{align}
答案1
好的,我在谷歌搜索另一个问题时自己找到了解决方案。这很有帮助:
\begin{gather}
\begin{align}
Cov\left(\tilde{c}_D,\tilde{r}_M\right) &= \sum_{i=1}^4f_i\left(c_{D,i}-E(\tilde{c}_D)\right)\left(r_{M,i}-E(\tilde{r}_M)\right),\\
Cov\left(\tilde{c}_E,\tilde{r}_M\right) &= \sum_{i=1}^4f_i\left(c_{E,i}-E(\tilde{c}_E)\right)\left(r_{M,i}-E(\tilde{r}_M)\right),
\end{align}\\
\begin{align}
V_D &= \frac{E(\tilde{c}_D) - \left( E\left(\tilde{r}_M\right) - r_f\right)\frac{Cov\left(\tilde{c}_D,\tilde{r}_M\right)}{\sigma_{\tilde{r}_M}^2}}{1+r_f},\\
V_U &= \frac{E(\tilde{c}_E) - \left( E\left(\tilde{r}_M\right) - r_f\right)\frac{Cov\left(\tilde{c}_E,\tilde{r}_M\right)}{\sigma_{\tilde{r}_M}^2}}{1+r_f},
\end{align}\\
\begin{align}
\mu_D &= \frac{E(\tilde{c}_D)}{V_D} - 1 \text{~und~}\\
\mu_E &= \frac{E(\tilde{c}_E)}{V_E} - 1.
\end{align}
\end{gather}
答案2
我建议进行一些改进:subequations
由于方程式是成对出现的,因此使用来自nccmath
分数中的分数的中等大小的分数,将其声明Cov
为数学运算符(现在看起来像三个变量的乘积),并使用来自的命令Cov
再次放置单词“und” :ArrowBetweenLines
mathtools
\documentclass{article}
\usepackage{mathtools, nccmath}
\DeclareMathOperator{\Cov}{Cov}
\begin{document}
\begin{gather}
\begin{subequations}
\begin{align}
\Cov\left(\tilde{c}_D,\tilde{r}_M\right) & = ∑_{i=1}⁴f_i\left(c_{D,i}-E(\tilde{c}_D)\right)\left(r_{M,i}-E(\tilde{r}_M)\right), \\
\Cov\left(\tilde{c}_E,\tilde{r}_M\right) & = ∑_{i=1}⁴f_i\left(c_{E,i}-E(\tilde{c}_E)\right)\left(r_{M,i}-E(\tilde{r}_M)\right),
\end{align}
\end{subequations}
\\
\begin{subequations}
\begin{align}
V_D & = \frac{E(\tilde{c}_D) - \left( E\left(\tilde{r}_M\right) - r_f\right)\mfrac{\Cov\left(\tilde{c}_D,\tilde{r}_M\right)}{\sigma_{\tilde{r}_M}²}}{1+r_f}, \\
V_U & = \frac{E(\tilde{c}_E) - \left( E\left(\tilde{r}_M\right) - r_f\right)\mfrac{\Cov\left(\tilde{c}_E,\tilde{r}_M\right)}{\sigma_{\tilde{r}_M}²}}{1+r_f},
\end{align}
\end{subequations}\\
\begin{subequations}
\begin{alignat}{2}
& & \mu_D & = \frac{E(\tilde{c}_D)}{V_D} - 1 \\
\ArrowBetweenLines[\text{und~}]
& & \mu_E & = \frac{E(\tilde{c}_E)}{V_E} - 1.
\end{alignat}
\end{subequations}
\end{gather}
\end{document}