我有两个问题。
首先:如何将所有 S 左对齐?
第二:如何让每个S的第二行与第一行对齐,而不是像原来那样居中。
\begin{equation}
\begin{gathered}\label{eq:suav2}
S_0^+ = \frac{240}{36}[11f_i - 18f_{i-1} + 9f_{i-2} - 2f_{i-3}]^2 +
1040[2f_i - 5f_{i-1} + 4f_{i-2} - f_{i-3}]^2 + \\
9732[f_i - 3f_{i-1} + 3f_{i-2} - f_{i-3}]^2 \\
S_1^+ = \frac{240}{36}[f_{i-2} - 6f_{i-1} + 3f_{i} + 2f_{i+1}]^2 +
1040[-2f_{i} + f_{i-1} + f_{i+1}]^2 + \\
9732[-3f_i + 3f_{i-1} - f_{i-2} + f_{i+1}]^2 \\
S_2^+ = \frac{240}{36}[-2f_{i-1} - 3f_{i} + 6f_{i+1} - 2f_{i+2}]^2 +
1040[-2f_{i} + f_{i-1} + f_{i+1}]^2 + \\
9732[3f_i - f_{i-1} - 3f_{i+1} + f_{i+2}]^2 \\
S_3^+ = \frac{240}{36}[-11f_{i} + 18f_{i+1} - 9f_{i+2} + 2f_{i+3}]^2 +
1040[2f_{i} - 5f_{i+1} + 4f_{i+2} - f_{i+3}]^2 + \\
9732[-f_i + 3f_{i+1} - 3f_{i+2} + f_{i+3}]^2
\end{gathered}
\end{equation}
答案1
使用aligned
而不是gathered
:
\documentclass{article}
\usepackage{amsmath}
\begin{document}
\begin{equation}
\begin{aligned}
S_0^+ ={}& \frac{240}{36}[11f_i - 18f_{i-1} + 9f_{i-2} - 2f_{i-3}]^2 +
1040[2f_i - 5f_{i-1} + 4f_{i-2} - f_{i-3}]^2 + {} \\
& 9732[f_i - 3f_{i-1} + 3f_{i-2} - f_{i-3}]^2 \\
S_1^+ ={}& \frac{240}{36}[f_{i-2} - 6f_{i-1} + 3f_{i} + 2f_{i+1}]^2 +
1040[-2f_{i} + f_{i-1} + f_{i+1}]^2 + {} \\
& 9732[-3f_i + 3f_{i-1} - f_{i-2} + f_{i+1}]^2 \\
S_2^+ ={}& \frac{240}{36}[-2f_{i-1} - 3f_{i} + 6f_{i+1} - 2f_{i+2}]^2 +
1040[-2f_{i} + f_{i-1} + f_{i+1}]^2 + {} \\
& 9732[3f_i - f_{i-1} - 3f_{i+1} + f_{i+2}]^2 \\
S_3^+ ={}& \frac{240}{36}[-11f_{i} + 18f_{i+1} - 9f_{i+2} + 2f_{i+3}]^2 +
1040[2f_{i} - 5f_{i+1} + 4f_{i+2} - f_{i+3}]^2 + {} \\
& 9732[-f_i + 3f_{i+1} - 3f_{i+2} + f_{i+3}]^2
\end{aligned}
\end{equation}
\end{document}
为了方便使用,我使用了={}&
...&=
更传统的关系对齐方式。
答案2
我建议另外两种方案:
\documentclass{article}
\usepackage{geometry}
\usepackage{amsmath}
\begin{document}
\begin{equation}
\raisetag{2cm}
\begin{aligned}
S₀^+ & =
\begin{aligned}[t]
\frac{240}{36}[11f_i - 18f_{i-1} + 9f_{i-2} - 2f_{i-3}]² & +
1040[2f_i - 5f_{i-1} + 4f_{i-2} - f_{i-3}]² \\[-0.7ex]
& + 9732[f_i - 3f_{i-1} + 3f_{i-2} - f_{i-3}]²
\end{aligned} \\
S₁^+ & =
\begin{aligned}[t]
\frac{240}{36}[f_{i-2} - 6f_{i-1} + 3f_{i} + 2f_{i+1}]² & +
1040[-2f_{i} + f_{i-1} + f_{i+1}]² \\[-0.7ex]
& + 9732[-3f_i + 3f_{i-1} - f_{i-2} + f_{i+1}]²
\end{aligned} \\
S₂^+ & =
\begin{aligned}[t]
\frac{240}{36}[-2f_{i-1} - 3f_{i} + 6f_{i+1} - 2f_{i+2}]² & +
1040[-2f_{i} + f_{i-1} + f_{i+1}]² \\[-0.7ex]
& + 9732[3f_i - f_{i-1} - 3f_{i+1} + f_{i+2}]²
\end{aligned} \\
S₃^+ & =
\begin{aligned}[t]
\frac{240}{36}[-11f_{i} + 18f_{i+1} - 9f_{i+2} + 2f_{i+3}]² & +
1040[2f_{i} - 5f_{i+1} + 4f_{i+2} - f_{i+3}]² \\[-0.7ex]
& + 9732[-f_i + 3f_{i+1} - 3f_{i+2} + f_{i+3}]²
\end{aligned}
\end{aligned}
\end{equation}
\vspace{1cm}
\begin{equation}
\begin{aligned}
S₀^+ & =
\begin{aligned}[t]
\frac{240}{36}[11f_i - 18f_{i-1} + 9f_{i-2} - 2f_{i-3}]² +
1040[2f_i - 5f_{i-1} + 4f_{i-2} - f_{i-3}]² \\[-0.7ex]
{} + 9732[f_i - 3f_{i-1} + 3f_{i-2} - f_{i-3}]²
\end{aligned} \\
S₁^+ & =
\begin{aligned}[t]
\frac{240}{36}[f_{i-2} - 6f_{i-1} + 3f_{i} + 2f_{i+1}]² +
1040[-2f_{i} + f_{i-1} + f_{i+1}]² \\[-0.7ex]
{} + 9732[-3f_i + 3f_{i-1} - f_{i-2} + f_{i+1}]²
\end{aligned} \\
S₂^+ & =
\begin{aligned}[t]
\frac{240}{36}[-2f_{i-1} - 3f_{i} + 6f_{i+1} - 2f_{i+2}]² +
1040[-2f_{i} + f_{i-1} + f_{i+1}]² \\[-0.7ex]
{} + 9732[3f_i - f_{i-1} - 3f_{i+1} + f_{i+2}]²
\end{aligned} \\
S₃^+ & =
\begin{aligned}[t]
\frac{240}{36}[-11f_{i} + 18f_{i+1} - 9f_{i+2} + 2f_{i+3}]² +
1040[2f_{i} - 5f_{i+1} + 4f_{i+2} - f_{i+3}]² \\[-0.7ex]
{} + 9732[-f_i + 3f_{i+1} - 3f_{i+2} + f_{i+3}]²
\end{aligned}
\end{aligned}
\end{equation}
\end{document}