\documentclass[letterpaper,12pt]{article}
\usepackage{amsmath}
\addtolength{\oddsidemargin}{-.5in}
\addtolength{\evensidemargin}{1in}
\addtolength{\textwidth}{1.15in}
\addtolength{\topmargin}{-.75in}
\addtolength{\textheight}{1in}
\begin{document}
\begin{align}
\nonumber &E_{AH}^* = (S_b^*, I_b^*, S_h^*, I_a^*, R_h^*) = \Big(\frac{\mu_b + \delta_b}{\beta_B}, \frac{\Lambda_b\beta_B - \mu_b(\mu_b+\delta_b)}{\beta_B(\mu_b + \delta_b)},\\ \nonumber &\frac{\Lambda_h\beta_B(\mu_b+\delta_b)}{\mu_h\beta_B(\mu_b+\delta_b)+\beta_{BH}\lbrack\Lambda_b\beta_B-\mu_b(\mu_b+\delta_b)\rbrack},
\frac{\Lambda_h\beta_{BH}\lbrack\Lambda_b\beta_B-\mu_b(\mu_b+\delta_b)\rbrack}{(\mu_h+d+\gamma_a)\big\lbrack\mu_h\beta_B(\mu_b+\delta_b)+\beta_{BH}\big(\Lambda_b\beta_B-\mu_b(\mu_b+\delta_b)\big)\big\rbrack},\\
&\frac{\gamma_a\Lambda_h\beta_{BH}\lbrack\Lambda_b\beta_B-\mu_b(\mu_b+\delta_b)\rbrack}{\mu_h(\mu_h+d+\gamma_a)\big\lbrack\mu_h\beta_B(\mu_b+\delta_b)+\beta_{BH}\big(\Lambda_b\beta_B-\mu_b(\mu_b+\delta_b)\big)\big\rbrack}\Big). \label{Eqn: EEAH}
\end{align}
\end{document}
有没有办法来解决这个问题?
答案1
公式的长度超出了允许的水平空间,为了便于阅读,将其分成五行。拆分行时,应具有与符号=
在所有行中都存在时相同的虚拟空间。为此,请\phantom{{}={}}
在没有 的行的开头插入=
。此外,添加两个括号{}={}
是因为=
是一个二进制运算符,就像+
或 一样-
,这些括号充当数学原子,用于在符号周围保持正确的间距=
。
\documentclass[letterpaper,12pt]{article}
\addtolength{\oddsidemargin}{-.5in}
\addtolength{\evensidemargin}{1in}
\addtolength{\textwidth}{1.15in}
\addtolength{\topmargin}{-.75in}
\addtolength{\textheight}{1in}
\usepackage{amsmath}
\begin{document}
\begin{align}
\nonumber E_{AH}^* &= (S_b^*, I_b^*, S_h^*, I_a^*, R_h^*) \\ \nonumber
&= \Big(\frac{\mu_b + \delta_b}{\beta_B}, \frac{\Lambda_b\beta_B - \mu_b(\mu_b+\delta_b)}{\beta_B(\mu_b + \delta_b)},\\ \nonumber
&\phantom{{}={}} \frac{\Lambda_h\beta_B(\mu_b+\delta_b)}{\mu_h\beta_B(\mu_b+\delta_b)+\beta_{BH}\lbrack\Lambda_b\beta_B-\mu_b(\mu_b+\delta_b)\rbrack}, \\ \nonumber
&\phantom{{}={}} \frac{\Lambda_h\beta_{BH}\lbrack\Lambda_b\beta_B-\mu_b(\mu_b+\delta_b)\rbrack}{(\mu_h+d+\gamma_a)\big\lbrack\mu_h\beta_B(\mu_b+\delta_b)+\beta_{BH}\big(\Lambda_b\beta_B-\mu_b(\mu_b+\delta_b)\big)\big\rbrack},\\
&\phantom{{}={}} \frac{\gamma_a\Lambda_h\beta_{BH}\lbrack\Lambda_b\beta_B-\mu_b(\mu_b+\delta_b)\rbrack}{\mu_h(\mu_h+d+\gamma_a)\big\lbrack\mu_h\beta_B(\mu_b+\delta_b)+\beta_{BH}\big(\Lambda_b\beta_B-\mu_b(\mu_b+\delta_b)\big)\big\rbrack}\Big). \label{Eqn: EEAH}
\end{align}
\end{document}
答案2
你的读者会很难找到符号和它们的展开之间的对应关系。我建议把主要方程放在中心,然后解释它下面的符号。
\documentclass[letterpaper,12pt]{article}
\usepackage{amsmath}
\begin{document}
\begin{gather}
E_{AH}^* = (S_b^*, I_b^*, S_h^*, I_a^*, R_h^*) \label{Eqn: EEAH} \\
\begin{align*}
S_b^* &= \frac{\mu_b + \delta_b}{\beta_B} \\
I_b^* &= \frac{\Lambda_b\beta_B - \mu_b(\mu_b+\delta_b)}{\beta_B(\mu_b + \delta_b)} \\
S_h^* &=
\frac{\Lambda_h\beta_B(\mu_b+\delta_b)}
{\mu_h\beta_B(\mu_b+\delta_b)+\beta_{BH}[\Lambda_b\beta_B-\mu_b(\mu_b+\delta_b)]}
\\
I_a^* &=
\frac{\Lambda_h\beta_{BH}[\Lambda_b\beta_B-\mu_b(\mu_b+\delta_b)]}
{(\mu_h+d+\gamma_a)\bigl[\mu_h\beta_B(\mu_b+\delta_b)+\beta_{BH}
\bigl(\Lambda_b\beta_B-\mu_b(\mu_b+\delta_b)\bigr)\bigr]}
\\
R_h^* &=
\frac{\gamma_a\Lambda_h\beta_{BH}[\Lambda_b\beta_B-\mu_b(\mu_b+\delta_b)]}
{\mu_h(\mu_h+d+\gamma_a)\bigl[\mu_h\beta_B(\mu_b+\delta_b)+
\beta_{BH}\bigl(\Lambda_b\beta_B-\mu_b(\mu_b+\delta_b)\bigr)\bigr]}.
\end{align*}
\end{gather}
\end{document}
答案3
我将 (a) 引入一个换行符,并 (b) 将所有行相对于第一个=
符号垂直对齐(有偏移)。我还将稍微增加连续行之间的空间,并将最外层括号的大小从\Big
增加到\bigg
。
\documentclass[letterpaper,12pt]{article}
\addtolength{\oddsidemargin}{-.5in}
\addtolength{\evensidemargin}{1in}
\addtolength{\textwidth}{1.15in}
\addtolength{\topmargin}{-.75in}
\addtolength{\textheight}{1in}
\usepackage{amsmath}
\begin{document}
\begin{align}
E_{AH}^* &= (S_b^*, I_b^*, S_h^*, I_a^*, R_h^*) \notag \\[1ex]
&= \biggl(\frac{\mu_b + \delta_b}{\beta_B},
\frac{\Lambda_b\beta_B - \mu_b(\mu_b+\delta_b)}{\beta_B(\mu_b + \delta_b)}, \notag \\[1.5ex]
&\qquad \frac{\Lambda_h\beta_B(\mu_b+\delta_b)}{\mu_h\beta_B(\mu_b+\delta_b)+\beta_{BH}\lbrack\Lambda_b\beta_B-\mu_b(\mu_b+\delta_b)\rbrack}, \notag \\[1.5ex]
&\qquad \frac{\Lambda_h\beta_{BH}\lbrack\Lambda_b\beta_B-\mu_b(\mu_b+\delta_b)\rbrack}{(\mu_h+d+\gamma_a)\big\lbrack\mu_h\beta_B(\mu_b+\delta_b)+\beta_{BH}\bigl(\Lambda_b\beta_B-\mu_b(\mu_b+\delta_b)\bigr)\big\rbrack}, \notag \\[1.5ex]
&\qquad\frac{\gamma_a\Lambda_h\beta_{BH}\lbrack\Lambda_b\beta_B-\mu_b(\mu_b+\delta_b)\rbrack}{\mu_h(\mu_h+d+\gamma_a)\big\lbrack\mu_h\beta_B(\mu_b+\delta_b)+\beta_{BH}\bigl(\Lambda_b\beta_B-\mu_b(\mu_b+\delta_b)\bigr)\big\rbrack}\biggr). \label{Eqn: EEAH}
\end{align}
\end{document}
答案4
另外 4 行还有 3 种变体:
\documentclass{article}
\usepackage[showframe]{geometry}
\usepackage{mathtools,nccmath}
\newcommand*{\dd}{\mathop{}\!\mathrm{d}}
\begin{document}
\begin{equation}
\begin{alignedat}[b]{2}
E_{AH}^*&=\mathrlap{(S_b^*, I_b^*, S_h^*, I_a^*, R_h^*) } \\
& = & \biggl(\frac{\mu_b + \delta_b}{\beta_B}, \mfrac{\Lambda_b\beta_B - \mu_b(\mu_b+\delta_b)}{\beta_B(\mu_b + \delta_b)}, \frac{\Lambda_h\beta_B(\mu_b+\delta_b)}{\mu_h\beta_B(\mu_b+\delta_b)+\beta_{BH}\lbrack\Lambda_b\beta_B-\mu_b(\mu_b+\delta_b)\rbrack} & , \\
& & \frac{\Lambda_h\beta_{BH}\lbrack\Lambda_b\beta_B-\mu_b(\mu_b+\delta_b)\rbrack}{(\mu_h+d+\gamma_a)\big\lbrack\mu_h\beta_B(\mu_b+\delta_b)+\beta_{BH}\big(\Lambda_b\beta_B-\mu_b(\mu_b+\delta_b)\big)\big\rbrack} & , \\
& & \frac{\gamma_a\Lambda_h\beta_{BH}\lbrack\Lambda_b\beta_B-\mu_b(\mu_b+\delta_b)\rbrack}{\mu_h(\mu_h+d+\gamma_a)\big\lbrack\mu_h\beta_B(\mu_b+\delta_b)+\beta_{BH}\big(\Lambda_b\beta_B-\mu_b(\mu_b+\delta_b)\big)\big\rbrack} &\biggr). \label{Eqn: EEAH}
\end{alignedat}
\end{equation}
\bigskip
\begin{equation}
\begin{alignedat}[b]{2}
E_{AH}^*&=\mathrlap{(S_b^*, I_b^*, S_h^*, I_a^*, R_h^*) } \\
& = \begin{multlined}[t] \biggl(\frac{\mu_b + \delta_b}{\beta_B}, \mfrac{\Lambda_b\beta_B - \mu_b(\mu_b+\delta_b)}{\beta_B(\mu_b + \delta_b)}, \frac{\Lambda_h\beta_B(\mu_b+\delta_b)}{\mu_h\beta_B(\mu_b+\delta_b)+\beta_{BH}\lbrack\Lambda_b\beta_B-\mu_b(\mu_b+\delta_b)\rbrack} , \\
\frac{\Lambda_h\beta_{BH}\lbrack\Lambda_b\beta_B-\mu_b(\mu_b+\delta_b)\rbrack}{(\mu_h+d+\gamma_a)\big\lbrack\mu_h\beta_B(\mu_b+\delta_b)+\beta_{BH}\big(\Lambda_b\beta_B-\mu_b(\mu_b+\delta_b)\big)\big\rbrack} , \\
\frac{\gamma_a\Lambda_h\beta_{BH}\lbrack\Lambda_b\beta_B-\mu_b(\mu_b+\delta_b)\rbrack}{\mu_h(\mu_h+d+\gamma_a)\big\lbrack\mu_h\beta_B(\mu_b+\delta_b)+\beta_{BH}\big(\Lambda_b\beta_B-\mu_b(\mu_b+\delta_b)\big)\big\rbrack} \biggr).
\end{multlined} \label{Eqn: EEAH}
\end{alignedat}
\end{equation}
\bigskip
\begin{fleqn}[2em]
\begin{equation}
\begin{alignedat}[b]{2}
E_{AH}^*&=\mathrlap{(S_b^*, I_b^*, S_h^*, I_a^*, R_h^*) } \\
& = & \biggl(\frac{\mu_b + \delta_b}{\beta_B},& \frac{\Lambda_b\beta_B - \mu_b(\mu_b+\delta_b)}{\beta_B(\mu_b + \delta_b)}, \frac{\Lambda_h\beta_B(\mu_b+\delta_b)}{\mu_h\beta_B(\mu_b+\delta_b)+\beta_{BH}\lbrack\Lambda_b\beta_B-\mu_b(\mu_b+\delta_b)\rbrack} , \\
& & & \frac{\Lambda_h\beta_{BH}\lbrack\Lambda_b\beta_B-\mu_b(\mu_b+\delta_b)\rbrack}{(\mu_h+d+\gamma_a)\big\lbrack\mu_h\beta_B(\mu_b+\delta_b)+\beta_{BH}\big(\Lambda_b\beta_B-\mu_b(\mu_b+\delta_b)\big)\big\rbrack} , \\
& & & \frac{\gamma_a\Lambda_h\beta_{BH}\lbrack\Lambda_b\beta_B-\mu_b(\mu_b+\delta_b)\rbrack}{\mu_h(\mu_h+d+\gamma_a)\big\lbrack\mu_h\beta_B(\mu_b+\delta_b)+\beta_{BH}\big(\Lambda_b\beta_B-\mu_b(\mu_b+\delta_b)\big)\big\rbrack} \biggr). \label{Eqn: EEAH}
\end{alignedat}
\end{equation}
\end{fleqn}
\end{document}