但很快就出现了错误:
C:\Program Files (x86)\MiKTeX 2.9\tex\latex\pgfplots\pgfplots.sty:48: Package pgfkeys Error: I do not know the key '/tikz/$w(x)', to which you passed '(b - x)^{\alpha }(x - a)^{\beta }$', and I am going to ignore it. Perhaps you misspelled it. [\end{forest}] C:\Program Files (x86)\MiKTeX 2.9\tex\latex\pgfplots\pgfplots.sty:48: Missing $ inserted. [\end{forest}]
\documentclass[]{standalone}
\usepackage[utf8]{inputenc}
\usepackage[czech]{babel}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{graphicx}
\usepackage{float}
\usepackage{forest}
\usepackage{tikz}
\usepackage{pgfplots}
\forestset{qtree/.style={for tree={parent anchor=south,
child anchor=north,align=center,inner sep=0pt}}}
\begin{document}
\begin{forest}baseline, qtree
[Obecné Jakobiho polynomy $P_n^{(\alpha,\beta)}$ \\ $X = (b - x)(x - a)$, $w(x) = (b - x)^{\alpha}(x - a)^{\beta}$
[DP]
[V’
[V[sent]]
[DP[Mary]]
[DP[D[a]][NP[letter]]]
]
]
\end{forest}
\end{document}
哪里错了? 是否可以像原始树一样进行左右对齐数学运算?
答案1
如果有人对正交多项式感兴趣的话,这里就是结果:)
\documentclass[]{standalone}
\usepackage[utf8]{inputenc}
\usepackage[czech]{babel}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{graphicx}
\usepackage{float}
\usepackage{forest}
\forestset{qtree/.style={for tree={parent anchor=south,
child anchor=north,align=center,inner sep=0pt,l sep=4em, s sep=8em}}}
\begin{document}
\begin{forest}baseline, qtree
[obecné Jakobiho polynomy $P_n^{(\alpha,\beta)}$ \\ {$X = (b - x)(x - a)$,\qquad $w(x) = (b - x)^{\alpha}(x - a)^{\beta}$} \\ {$\alpha > -1$, $\beta> 1$}
[zjednodušené Jakobiho polynomy $P_n^{(\alpha,\beta)}$ \\ {$X = 1 - x^2$, $w(x) = (1 - x)^{\alpha}(1 + x)^{\beta}$}, edge label={node[midway,right, align=left]{omezení na $-1 \leq x \leq +1$\\$a = -1$, $b = +1$}}
[ultrasférické polynomy (Gegenbauerovy) $F_n^{(\lambda)}$ \\ {$X = 1 - x^2$, $w(x) = (1 - x^2)$}, edge label={node[midway,right, align=left]{omezení na $\alpha = \beta = \lambda$}}
[Legendrovy polynomy $L_n(x)$ \\ {$X = 1 - x^2$, $w(x) = 1$},edge label={node[midway,left, align=left]{$\lambda = 0$\quad}}] [Čebyševovy polynomy I. druhu $T_n(x)$ \\ {$X = 1 - x^2$, $w(x) = (1 - x^2)^{-1/2}$},edge label={node[midway,right, align=left]{\quad $\lambda = -\frac{1}{2}$}} [Čebyševovy polynomy II. druhu $U_n(x)$ \\ {$X = 1 - x^2$, $w(x) = (1 - x^2)^{+1/2}$},edge label={node[midway,right, align=left]{\quad $\lambda = +\frac{1}{2}$}}]
]
]
]
]
\end{forest}
\end{document}
答案2
大部分内容与主题无关(作为对 op 答案的补充)...
tikzset
对于边标签,在环境之外定义节点样式是合理的forest
。这样代码会变得稍微短一些- 如果代码具有树的形状,则更容易理解和维护
\documentclass[margin=3mm]{standalone}
\usepackage[utf8]{inputenc}
\usepackage[czech]{babel}
\usepackage{forest}
\tikzset{EL/.style={%Edge Labels
midway,
#1,% <--- position: left or right
inner xsep=6pt,
font=\small,
align=center,
}
}
\forestset{qtree/.style={
for tree={align=center,
inner sep=0pt,
%
edge = {draw, semithick, -stealth},
l sep=4em, s sep=3em
}}
}
\begin{document}
\begin{forest}qtree
[obecné Jakobiho polynomy $P_n^{(\alpha,\beta)}$ \\
{$X = (b - x)(x - a)$,\qquad $w(x) = (b - x)^{\alpha}(x - a)^{\beta}$} \\
{$\alpha > -1$, $\beta> 1$}
[zjednodušené Jakobiho polynomy $P_n^{(\alpha,\beta)}$ \\
{$X = 1 - x^2$, $w(x) = (1 - x)^{\alpha}(1 + x)^{\beta}$},
edge label={node[EL=right] {omezení na $-1 \leq x \leq +1$\\
$a = -1$, $b = +1$}}
[ultrasférické polynomy (Gegenbauerovy) $F_n^{(\lambda)}$ \\
{$X = 1 - x^2$, $w(x) = (1 - x^2)$},
edge label={node[EL=right] {omezení na $\alpha = \beta = \lambda$}}
[Legendrovy polynomy $L_n(x)$ \\
{$X = 1 - x^2$, $w(x) = 1$},
edge label={node[EL=left] {$\lambda = 0$\quad}}]
[Čebyševovy polynomy I. druhu $T_n(x)$ \\
{$X = 1 - x^2$, $w(x) = (1 - x^2)^{-1/2}$},
edge label={node[EL=right] {$\lambda = -\frac{1}{2}$}}
[Čebyševovy polynomy II. druhu $U_n(x)$ \\
{$X = 1 - x^2$, $w(x) = (1 - x^2)^{+1/2}$},
edge label={node[EL=right] {$\lambda = +\frac{1}{3}$}}]
]
]
]
]
\end{forest}
\end{document}