这就是我尝试在一页上放置一个冗长的表格的方法。
\documentclass{IEEEtran}% http://www.ctan.org/pkg/ieeetran
\begin{document}
\begin{table}[]
\centering
\caption{My caption}
\label{my-label}
\begin{tabular}{|l|l|l|l|}
\hline
\textbf{Paper} & \textbf{Goal} & \textbf{Data} & \multicolumn{1}{c|}{\textbf{Tool/Technology}} \\ \hline
Security threats for big data: A study on Enron e-mail dataset & Mitigating Phishing Attacks & Enron E-mail Dataset & Enronic Software \\ \hline
A Big Data architecture for security data and its application to phishing characterization & Defending Against Spam and Phishing & \begin{tabular}[c]{@{}l@{}}pcap\\ files, logs from honey net\end{tabular} & \begin{tabular}[c]{@{}l@{}}Hadoop,\\ Spark\end{tabular} \\ \hline
Data mining methods for detection of new malicious executables & \begin{tabular}[c]{@{}l@{}}Detect\\ malicious malware\end{tabular} & \begin{tabular}[c]{@{}l@{}}Malicious\\ and benign executable binaries\end{tabular} & \begin{tabular}[c]{@{}l@{}}Data\\ Mining Algorithms\end{tabular} \\ \hline
A practical solution to improve cyber security on a global scale & \begin{tabular}[c]{@{}l@{}}Security\\ monitoring Tool\end{tabular} & \begin{tabular}[c]{@{}l@{}}Network\\ flow\end{tabular} & \begin{tabular}[c]{@{}l@{}}Data\\ Mining Techniques, High Functioning autistic graduates\end{tabular} \\ \hline
Automate Cybersecurity Data Triage by Leveraging Human Analysts' Cognitive Process & \begin{tabular}[c]{@{}l@{}}Help\\ security analysts with data triage\end{tabular} & Securityanalysts' operation traces & Data mining Techniques, Humans \\ \hline
Analyzing and Predicting Security Event Anomalies: Lessons Learned from a Large Enterprise Big Data Streaming Analytics Deployment & Improve SIEM by adding important features. & Traditional SIEM systems & Data Mining, Graph Analytics \\ \hline
Study on Network Information Security Based on Big Data & APT Detection & \begin{tabular}[c]{@{}l@{}}Network\\ data collection\end{tabular} & Big Data Analytics(BDA), Network event collection, Big Data correlation analysis \\ \hline
Big data machine learning and graph analytics: Current state and future challenges & Combine batch and stream data processes for efficeincy & Hetereogeneous big data & Lambda architecture \\ \hline
SIM in light of big data & Cyber attack detection & Security logs & Machine learning techniques \\ \hline
Data fusion \& visualization application for network forensic investigation-a case study & \begin{tabular}[c]{@{}l@{}}Network\\ forensic investigation\end{tabular} & Network logs & \begin{tabular}[c]{@{}l@{}}Data\\ fusion techniques, visualization, Self Organizing Map\end{tabular} \\ \hline
Owlsight: Platform for real-time detection and visualization of cyber threats & \begin{tabular}[c]{@{}l@{}}Real\\ time detection and visualization of threats\end{tabular} & Heterogeneous network data & \begin{tabular}[c]{@{}l@{}}BDA,\\ web services, data visualization\end{tabular} \\ \hline
Predicting and fixing vulnerabilities before they occur: a big data approach & \begin{tabular}[c]{@{}l@{}}Proactive\\ (Prevention better than cure approach)\end{tabular} & Heterogeneous network data & \begin{tabular}[c]{@{}l@{}}BDA\\ techniques, machine learning\end{tabular} \\ \hline
Machine learning classification model for Network based Intrusion Detection System & Network Intrusion Detection System in Android phones & Android OS data & Machine Learning Algorithms \\ \hline
A big data architecture for large scale security monitoring & \begin{tabular}[c]{@{}l@{}}Intrusion\\ detection and prevention systems\end{tabular} & \begin{tabular}[c]{@{}l@{}}NetFlow\\ records, HTTP traffic and honeypot data\end{tabular} & Shark, Spark, machine learning algorithms \\ \hline
A Scalable Meta-Model for Big Data Security Analyses & \begin{tabular}[c]{@{}l@{}}Detect\\ network anomaly at per flow level rather than the usual per packet level which\\ tends to bring scalability issues\end{tabular} & \begin{tabular}[c]{@{}l@{}}Networkflow\\ data\end{tabular} & Machine learning and data mining algorithms \\ \hline
Network security and anomaly detection with Big-DAMA, a big data analytics framework & Intrusion Detection System & \begin{tabular}[c]{@{}l@{}}Network\\ flow Data\end{tabular} & \begin{tabular}[c]{@{}l@{}}Spark,\\ Cassandra, Machine Learning Algorithms\end{tabular} \\ \hline
SHIELD: A novel NFV-based cybersecurity framework & \begin{tabular}[c]{@{}l@{}}SecaaS\\ to protect applications on software as service platform\end{tabular} & Heterogeneous Data & Big Data Analytics \\ \hline
Security evaluation of RC4 using big data analytics & \begin{tabular}[c]{@{}l@{}}Analysing\\ RC4 based on big data processing technique to analyse the security of RC4\end{tabular} & RC4 & MapReduce \\ \hline
\end{tabular}
\end{table}
\end{document}
我怎样才能做到这一点?
答案1
我建议使用以下解决方案,使用可变宽度tabularx
列,并采用左对齐、booktabs
水平线和extrarowheight
作为视觉指南。此外,新列类型定义中ragged2e
的命令\RaggedRight
允许在不规则文本中使用连字符,并且在使用加载适当的连字符模式时效果最佳babel
。
\documentclass{IEEEtran}
\usepackage[english]{babel}
\usepackage{tabularx}
\usepackage{booktabs}
\usepackage{ragged2e}
\newcolumntype{R}{>{\RaggedRight\let\newline\\\arraybackslash\hspace{0pt}}X}
\begin{document}
\begin{table*}[]
\setlength\extrarowheight{5pt}
\centering
\caption{My caption}
\label{my-label}
\begin{tabularx}{\textwidth}{RRRR}
\toprule
\textbf{Paper} & \textbf{Goal} & \textbf{Data} & \textbf{Tool/Technology} \\
\midrule
Security threats for big data: A study on Enron e-mail dataset & Mitigating Phishing Attacks & Enron E-mail Dataset & Enronic Software \\
A Big Data architecture for security data and its application to phishing characterization & Defending Against Spam and Phishing & pcap files, logs from honey net & Hadoop, Spark \\
Data mining methods for detection of new malicious executables & Detect malicious malware & Malicious and benign executable binaries & Data Mining Algorithms \\
A practical solution to improve cyber security on a global scale & Security monitoring Tool & Network flow & Data Mining Techniques, High Functioning autistic graduates \\
Automate Cybersecurity Data Triage by Leveraging Human Analysts' Cognitive Process & Help security analysts with data triage & Securityanalysts' operation traces & Data mining Techniques, Humans \\
Analyzing and Predicting Security Event Anomalies: Lessons Learned from a Large Enterprise Big Data Streaming Analytics Deployment & Improve SIEM by adding important features. & Traditional SIEM systems & Data Mining, Graph Analytics \\
Study on Network Information Security Based on Big Data & APT Detection & Network data collection & Big Data Analytics(BDA), Network event collection, Big Data correlation analysis \\
Big data machine learning and graph analytics: Current state and future challenges & Combine batch and stream data processes for efficeincy & Hetereogeneous big data & Lambda architecture \\
SIM in light of big data & Cyber attack detection & Security logs & Machine learning techniques \\
Data fusion \& visualization application for network forensic investigation-a case study & Network forensic investigation & Network logs & Data fusion techniques, visualization, Self Organizing Map \\
Owlsight: Platform for real-time detection and visualization of cyber threats & Real time detection and visualization of threats & Heterogeneous network data &BDA, web services, data visualization \\
Predicting and fixing vulnerabilities before they occur: a big data approach & Proactive (Prevention better than cure approach) & Heterogeneous network data & BDA techniques, machine learning \\
Machine learning classification model for Network based Intrusion Detection System & Network Intrusion Detection System in Android phones & Android OS data & Machine Learning Algorithms \\
A big data architecture for large scale security monitoring & Intrusion detection and prevention systems& NetFlow records, HTTP traffic and honeypot data & Shark, Spark, machine learning algorithms \\
A Scalable Meta-Model for Big Data Security Analyses & Detect network anomaly at per flow level rather than the usual per packet level which tends to bring scalability issues & Networkflow data & Machine learning and data mining algorithms \\
Network security and anomaly detection with Big-DAMA, a big data analytics framework & Intrusion Detection System & Network flow Data & Spark, Cassandra, Machine Learning Algorithms \\
SHIELD: A novel NFV-based cybersecurity framework & SecaaS to protect applications on software as service platform & Heterogeneous Data & Big Data Analytics \\
Security evaluation of RC4 using big data analytics & Analysing RC4 based on big data processing technique to analyse the security of RC4 & RC4 & MapReduce \\
\bottomrule
\end{tabularx}
\end{table*}
\end{document}
答案2
你可能无法轻易做到这一点......确保表格保持在页面宽度内很容易:替换
\begin{tabular}{|l|l|l|l|}
和
\begin{tabular}{|p{.25\textwidth}|p{.25\textwidth}|p{.25\textwidth}|p{.25\textwidth}|}
使线条可以在单元格内换行。
但是,您在很多单元格中使用了另一层表格,而这些表格不遵守外部表格所施加的限制。您必须摆脱这些嵌套的表格(当您将列规范更改为“p{}”时,许多表格似乎变得多余),或者确保它们被限制在列宽(表格*)内。
解决了这个问题后,您必须确保表格可以跨越两页(或更多),而表格环境不允许这样做。为此,您必须使用 xtab 或 longtable 之类的包。
(注意:以横向排版表格可能会更好,但这会使其不适合一页)。
答案3
还有一个选择……
- 您的表格太宽,无法容纳在一列中。因此它必须跨越两列,即在
tabular*
环境中 - 为了获得更“专业”的外观,我将
\hline
使用包定义的规则booktabs
- 对于表格环境,我建议利用包
tabularx
(您在问题中标记它)。有了它,表格宽度可以设置为等于文本宽度,并且列的宽度可以自动确定 - 如果表格有很多行,我会将字体大小减小到
\small
- 为了在表格中的行之间增加垂直空间,我将利用包
\makegapedcells
中的宏makecell
\documentclass{IEEEtran}% http://www.ctan.org/pkg/ieeetran
\usepackage{booktabs,
makecell, % <--- added
tabularx}
\renewcommand\theadfont{\bfseries}
\renewcommand\theadgape{}
\setcellgapes{5pt}
\usepackage{rotating}
\usepackage{afterpage}
\usepackage{lipsum}% for dummy text when needed
\begin{document}
\lipsum[1]
\begin{sidewaystable*}
\centering
\caption{My caption}
\label{my-label}
\makegapedcells
\begin{tabularx}{\linewidth}{ *{4}{X} }% here is defined number of collumns
\toprule
\thead{Paper} & \thead{Goal} & \thead{Paper} & \thead{Goal} \\
\midrule
\lipsum*[11] & \lipsum*[11] & \lipsum*[12] & \lipsum*[11] \\
\lipsum*[11] & \lipsum*[11] & \lipsum*[11] & \lipsum*[11] \\
\bottomrule
\end{tabularx}
\end{sidewaystable*}
\lipsum\lipsum
\end{document}
这个 mwe 给出:
答案4
您可以尝试以下操作:
\begin{tabular}{|p{0.25\textwidth}|p{0.25\textwidth}|p{0.25\textwidth}|p{0.25\textwidth}|}