我用的是Daum 方程编辑器创建以下公式:
这是生成的 Tex:
{ f }_{ LR\_ FI }\left( x \right) =\left\{
L\left( \frac { { m }_{ l }-x }{ \alpha } \right) ,x\le { m }_{ l },\\
1,{ m }_{ l }\le x\le { m }_{ r },\\
R\left( \frac { x-{ m }_{ r } }{ \beta } \right) ,x\ge m \right
然而,在 Latex 编辑器中,我收到以下错误:
Missing delimiter (. inserted).
<to be read again>
$
l.1288 ...} }{ \beta } \right) ,x\ge m \right \]
假设 Tex 处于数学模式。
为什么我会收到此错误?如何解决?
谢谢。
答案1
决赛\right
少了一个.
。但无论如何,还是可以取得更好的成绩。
这里有三种方法可以用更轻的代码获得更好的结果,要么基于dcases
来自mathtools
或上的环境alignat
和包empheq
(加载mathtools
),要么结合包eqparbox
获得更好的对齐(由于中间行相对于上行和下行的长度差异):
\documentclass[11pt]{article}
\usepackage{newtxtext, newtxmath}
\usepackage{mathtools, nccmath, empheq}
\usepackage{eqparbox}
\newcommand{\eqmathbox}[2][M]{\eqmakebox[#1]{$\displaystyle #2$}}
\begin{document} %
\[ f_{ LR\_ FI }(x ) = \begin{dcases}
\eqmathbox{L\Bigl( \frac {m_{l}-x }{\alpha} \Bigr),} & x \le m_{ l }, \\
\eqmathbox{1,} & m_{l} \le x \le m_{r},\\
\eqmathbox{R\Bigl( \frac{x - m_{r}}{\beta}\Bigr),} & x \ge m_{r}.
\end{dcases} \]%
\[ f_{ LR\_ FI }(x ) = \begin{dcases}
\eqmathbox{ L\Bigl( \frac {m_{l}-x }{\alpha} \Bigr),} & \eqmathbox[C]{x \le m_{ l },} \\
\eqmathbox{1,} & \eqmathbox[C]{ m_{l} \le x \le m_{r},}\\
\eqmathbox{R\Bigl( \frac{x - m_{r}}{\beta}\Bigr),} & \eqmathbox[C]{x \ge m_{r}.}
\end{dcases} \]%
\begin{empheq}[left={f_{ LR\_ FI }(x ) = \empheqlbrace}]{alignat* = 2}
& \eqmathbox{ L\Bigl( \frac {m_{l}-x }{\alpha} \Bigr),} &\quad x & \le m_{ l }, \\
& \eqmathbox{1,} & m_{l} & \le x \le m_{r},\\
& \eqmathbox{R\Bigl( \frac{x - m_{r}}{\beta}\Bigr),} & x & \ge m_{r}.
\end{empheq}
\end{document}
答案2
一些建议:
不要过度使用
\left
和right
自动调整括号的大小——很多时候,最好强制使用固定大小不要不必要地使用花括号来包裹各种项目——过度使用
{
和}
会使代码更难阅读,而不是更容易阅读将字符串
LR\_FI
放在 a\mathit
(或者\mathrm
,如果你愿意)语句中,以获得更紧凑的“外观”为了获得更紧凑的外观,请考虑使用内联分数表示法,而不是
\frac{...}{...}
请熟悉
amsmath
包及其cases
环境以及mathtools
包(包的超集amsmath
)及其cases*
环境
\documentclass{article}
\usepackage{mathtools} % for 'cases*' environment
\usepackage{newtxtext,newtxmath} % optional -- Times Roman clone
\begin{document}
\[
f_{\mathit{LR\_FI}}^{}(x) =
\begin{cases*}
L((m_l-x)/\alpha) & if $x\le m_l$\,, \\
1 & if $m_l\le x\le m_r$\,, \\
R((x-m_r)/\beta) & if $x\ge m$\,.
\end{cases*}
\]
\end{document}