我删除了可以正常工作的幻灯片,检查它们是否编译正确,并将所有不能正常工作的幻灯片都包含在这里(也单独检查)。
\documentclass[17pt]{beamer}
\usepackage{amsmath}
\usepackage{verbatim}
\usepackage[utf8]{inputenc}
\usepackage[OT1]{fontenc}
\usepackage{graphicx}
\usebackgroundtemplate
\begin{document}
\sffamily \bfseries
\begin{frame}
\frametitle{Limit of a Rational Polynomial Function}\pause
begin{itemize}
\item Let us find $\lim_{x \to \2} \frac {3x^{2}-x-10} {x^{2}-4}$
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Limit of a Rational Polynomial Function}\pause
begin{itemize}
\item To understand limits of functions
\end{itemize}
$\lim_{x \to \2} \frac {3x^{2}-x-10} {x^{2}-4} = 2.75$
\end{frame}
\begin{frame}
\frametitle{Limit of a Discontinuous Function}\pause
Let us find $\lim_{x \to \0} f(x) = \[ \left\{
\begin{array}{11}
$(2x+3) & x \leq 0$ \\
$3(x+1) & x $>$ 0$ \\
\end{array}
\right. \]
and $\lim_{x \to \1} f(x) = \[ \left\{
\begin{array}{11}
$(2x+3) & x \leq 0$ \\
$3(x+1) & x $>$ 0$ \\
\end{array}
\right. \]
\end{frame}
\begin{frame}
\frametitle{Limit of a Discontinuous Function}\pause
Let us find $\lim_{x \to \0} f(x) = \[ \left\{
\begin{array}{11}
$(2x+3) & x \leq 0$ = 3 \\
$3(x+1) & x $>$ 0$ \\
\end{array}
\right. \]
and $\lim_{x \to \1} f(x) = \[ \left\{
\begin{array}{11}
$(2x+3) & x \leq 0$ = 6 \\
$3(x+1) & x $>$ 0$ \\
\end{array}
\right. \]
\end{frame}
\begin{frame}
\frametitle{Assignment}\pause
\begin{itemize} [<+-|alert@+>]
\item Find $\lim_{x \to \2} (x^{3}-2x^{2})/(x^{2}-5x+6)$
\item Evaluate $\lim_{x \to \0} \frac {sin 4x} {sin 2x}$
\end{itemize}
\end{frame}
\end{document}
答案1
一些错误:
begin{itemize}
->\begin{itemize}
\2
->2
,\1
和相同\0
正如大卫卡莱尔在他的评论中所说的那样,
array
已经处于数学模式,您不需要使用$...$
。数组的对齐不
ll
应该11
不要
\[...\]
在数学模式中嵌套显示数学环境()sin
应该\sin
\usepackage{graphicx}
并且\usebackgroundtemplate
是多余的不是一个 tex 错误,但
(2x+3) x≤0=6
看起来具有误导性。也cases
可能更适合作为array
\documentclass[17pt]{beamer}
\usepackage{amsmath}
\usepackage{verbatim}
\usepackage[utf8]{inputenc}
\usepackage[OT1]{fontenc}
\usepackage{graphicx}
\usebackgroundtemplate
\begin{document}
\sffamily \bfseries
\begin{frame}
\frametitle{Limit of a Rational Polynomial Function}\pause
\begin{itemize}
\item Let us find $\lim_{x \to 2} \frac {3x^{2}-x-10} {x^{2}-4}$
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Limit of a Rational Polynomial Function}\pause
\begin{itemize}
\item To understand limits of functions
\end{itemize}
$\lim_{x \to 2} \frac {3x^{2}-x-10} {x^{2}-4} = 2.75$
\end{frame}
\begin{frame}
\frametitle{Limit of a Discontinuous Function}\pause
Let us find \[\lim_{x \to 0} f(x) = \left\{
\begin{array}{ll}
(2x+3) & x \leq 0 \\
3(x+1) & x > 0 \\
\end{array}
\right. \]
and \[\lim_{x \to 1} f(x) = \left\{
\begin{array}{ll}
(2x+3) & x \leq 0 \\
3(x+1) & x > 0 \\
\end{array}
\right. \]
\end{frame}
\begin{frame}
\frametitle{Limit of a Discontinuous Function}\pause
Let us find \[\lim_{x \to 0} f(x) = \left\{
\begin{array}{ll}
(2x+3) & x \leq 0 = 3 \\
3(x+1) & x > 0 \\
\end{array}
\right. \]
and \[\lim_{x \to 1} f(x) = \left\{
\begin{array}{ll}
(2x+3) & x \leq 0 = 6 \\
3(x+1) & x > 0 \\
\end{array}
\right. \]
\end{frame}
\begin{frame}
\frametitle{Assignment}\pause
\begin{itemize} [<+-|alert@+>]
\item Find $\lim_{x \to 2} (x^{3}-2x^{2})/(x^{2}-5x+6)$
\item Evaluate $\lim_{x \to 0} \frac {\sin 4x} {\sin 2x}$
\end{itemize}
\end{frame}
\end{document}