将两个表格并排对齐,避免数字重叠

将两个表格并排对齐,避免数字重叠

如何确保表格不重叠并适合工作表?如何对齐表格以使两个表格的顶部对齐?

\documentclass[a4paper,12pt]{article}
\usepackage[portuguese]{babel}
\usepackage{graphicx}
\usepackage{float}
\usepackage{hyperref}
\usepackage{fancyvrb}
\usepackage{color}
\usepackage{multirow}
\usepackage{url}
\usepackage{gensymb}
\usepackage{fullpage}
\usepackage{amsmath}
\usepackage{booktabs}
\usepackage[utf8]{inputenc}
\usepackage{fancyhdr,lastpage}
\usepackage{amsmath}
\usepackage{bm}
\usepackage{enumerate}
\usepackage{scalefnt}
\usepackage{xcolor}
\usepackage{subfigure}
\usepackage{wrapfig}
\begin{document}
\section{Resultados obtidos}
\subsection{Intensidade do vidro}
\begin{table}[h]
\begin{minipage}{.3\textwidth}
\centering
\begin{tabular}{c|c|c}
\toprule
$\lambda$ (nm) & Frequência (Hz) & Intensidade ($\%$)\\  \midrule
(300     $\pm$ 1) & $(1,0000 \pm 0,0033) \times 10^{15}$ & (2,6 $\pm$ 
0,1)\\
(310 $\pm$ 1) & $(9,6774 \pm 0,0031) \times 10^{14}$ & (3,5 $\pm$ 
0,1)\\
(320 $\pm$ 1) & $(9,3750 \pm 0,0029) \times 10^{14}$ & (7,7 $\pm$ 
0,1)\\
(330 $\pm$ 1) & $(9,0909 \pm 0,0028) \times 10^{14}$ & (16,1 $\pm$ 
0,1)\\
(340 $\pm$ 1) & $(8,8235 \pm 0,0026) \times 10^{14}$ & (28,2 $\pm$ 
0,1)\\
(350 $\pm$ 1) & $(8,5714 \pm 0,0025) \times 10^{14}$ & (42,2 $\pm$ 
0,1)\\
(360 $\pm$ 1) & $(8,3333 \pm 0,0023) \times 10^{14}$ & (57,1 $\pm$ 
0,1)\\
(370 $\pm$ 1) & $(8,1081 \pm 0,0022) \times 10^{14}$ & (74,4 $\pm$ 
0,1)\\
(380 $\pm$ 1) & $(7,8947 \pm 0,0021) \times 10^{14}$ & (92,6 $\pm$ 
0,1)\\
(390 $\pm$ 1) & $(7,6923 \pm 0,0020) \times 10^{14}$ & (113,6 $\pm$ 
0,1)\\
(400 $\pm$ 1) & $(7,5000 \pm 0,0019) \times 10^{14}$ & (137,3 $\pm$ 
0,1)\\
(410 $\pm$ 1) & $(7,3171 \pm 0,0018) \times 10^{14}$ & (143,2 $\pm$ 
0,1)\\
(420 $\pm$ 1) & $(7,1429 \pm 0,0017) \times 10^{14}$ & (143,2 $\pm$ 
0,1)\\
(430 $\pm$ 1) & $(6,9767 \pm 0,0016) \times 10^{14}$ & (143,2 $\pm$ 
0,1)\\
(440 $\pm$ 1) & $(6,8182 \pm 0,0016) \times 10^{14}$ & (143,2 $\pm$ 
0,1)\\
(450 $\pm$ 1) & $(6,6667 \pm 0,0015) \times 10^{14}$ & (143,2 $\pm$ 
0,1)\\
(460 $\pm$ 1) & $(6,5217 \pm 0,0014) \times 10^{14}$ & (143,2 $\pm$ 
0,1)\\
(470 $\pm$ 1) & $(6,3830 \pm 0,0014) \times 10^{14}$ & (143,2 $\pm$ 
0,1)\\
(480 $\pm$ 1) & $(6,2500 \pm 0,0013) \times 10^{14}$ & (143,2 $\pm$ 
0,1)\\
(490 $\pm$ 1) & $6,1224 \pm 0,0013) \times 10^{14}$ & (143,2 $\pm$ 
0,1)\\
(500 $\pm$ 1) & $(6,0000 \pm 0,0012) \times 10^{14}$ & (143,2 $\pm$ 
0,1)\\
(510 $\pm$ 1) & $(5,8824 \pm 0,0012) \times 10^{14}$ & (143,2 $\pm$ 
0,1)\\
(520 $\pm$ 1) & $(5,7692 \pm 0,0011) \times 10^{14}$ & (143,2 $\pm$ 
0,1)\\
(530     $\pm$ 1) & $(5,6604 \pm 0,0011) \times 10^{14}$ & (143,2 
$\pm$ 0,1)\\
(540     $\pm$ 1) & $(5,5556 \pm 0,0010) \times 10^{14}$ & (143,2 
$\pm$ 0,1)\\
(550 $\pm$ 1) & $(5,4545 \pm 0,0010) \times 10^{14}$ & (143,2 $\pm$ 
0,1)\\ \bottomrule
\end{tabular}

\end{minipage} 
\begin{minipage}{1\textwidth}
\centering
\begin{tabular}{ccc}
\toprule
$\lambda$ (nm) & Frequência (Hz) & Intensidade ($\%$)\\ \midrule
(560 $\pm$ 1) & $(5,3571 \pm 0,0010) \times 10^{14}$ & (143,2 $\pm$ 
0,1)\\
(570 $\pm$ 1) & $(5,2632 \pm 0,0009) \times 10^{14}$ & (143,2 $\pm$ 
0,1)\\
(580     $\pm$ 1) & $(5,1724 \pm 0,0009) \times 10^{14}$ & (143,2 
$\pm$ 0,1)\\
(590     $\pm$ 1) & $(5,0847 \pm 0,0009) \times 10^{14}$ & (29,9 
$\pm$ 0,1)\\
(600 $\pm$ 1) & $(5,0000 \pm 0,0008) \times 10^{14}$ & (33,1 $\pm$ 
0,1)\\
(610 $\pm$ 1) & $(4,9180 \pm 0,0008) \times 10^{14}$ & (36,7 $\pm$ 
0,1)\\
(620 $\pm$ 1) & $(4,8387 \pm 0,0008) \times 10^{14}$ & (40,5 $\pm$ 
0,1)\\
(630 $\pm$ 1) & $(4,7619 \pm 0,0008) \times 10^{14}$ & (44,3 $\pm$ 
0,1)\\
(640 $\pm$ 1) & $(4,6875 \pm 0,0007) \times 10^{14}$ & (48,1 $\pm$ 
0,1)\\
(650 $\pm$ 1) & $(4,6154 \pm 0,0007) \times 10^{14}$ & (53,0 $\pm$ 
0,1)\\
(660 $\pm$ 1) & $(4,5455 \pm 0,0007) \times 10^{14}$ & (58,0 $\pm$ 
0,1)\\
(670 $\pm$ 1) & $(4,4776 \pm 0,0007) \times 10^{14}$ & (62,1 $\pm$ 
0,1)\\
(680 $\pm$ 1) & $(4,4118 \pm 0,0006) \times 10^{14}$ & (65,1 $\pm$ 
0,1)\\
(690 $\pm$ 1) & $(4,3478 \pm 0,0006) \times 10^{14}$ & (68,0 $\pm$ 
0,1)\\
(700 $\pm$ 1) & $(4,2857 \pm 0,0006) \times 10^{14}$ & (70,9 $\pm$ 
0,1)\\
(710 $\pm$ 1) & $(4,2254 \pm 0,0006) \times 10^{14}$ & (73,4 $\pm$ 
0,1)\\
(720 $\pm$ 1) & $(4,1667 \pm 0,0006) \times 10^{14}$ & (76,0 $\pm$ 
0,1)\\
(730 $\pm$ 1) & $(4,1096 \pm 0,0006) \times 10^{14}$ & (78,6 $\pm$ 
0,1)\\
(740 $\pm$ 1) & $(4,0541 \pm 0,0005) \times 10^{14}$ & (80,6 $\pm$ 
0,1)\\
(750 $\pm$ 1) & $(4,0000 \pm 0,0005) \times 10^{14}$ & (81,9 $\pm$ 
0,1)\\
(760 $\pm$ 1) & $(3,9474 \pm 0,0005) \times 10^{14}$ & (82,7 $\pm$ 
0,1)\\
(770 $\pm$ 1) & $(3,8961 \pm 0,0005) \times 10^{14}$ & (83,1 $\pm$ 
0,1)\\
(780 $\pm$ 1) & $(3,8462 \pm 0,0005) \times 10^{14}$ & (82,9 $\pm$ 
0,1)\\
(790 $\pm$ 1) & $(3,7975 \pm 0,0005) \times 10^{14}$ & (82,3 $\pm$ 
0,1)\\
(800 $\pm$ 1) & $(3,7500 \pm 0,0005) \times 10^{14}$ & (81,7 $\pm$ 
0,1)\\ \bottomrule
\end{tabular}

\end{minipage}% 
\caption{Comprimento de onda ($\lambda$), frequência e intensidade 
relativa do vidro sem amostra/filme.}
\end{table}
\end{document}

答案1

一些建议:

  • 不要将表格材料放在minipage环境中

  • 由于大部分表格类材料都是“数学”,因此请使用array环境而不是tabular环境

  • 中间一列:分解出公因数10^{14},将信息放在标题中

  • 省略所有不必要的括号

  • 更清晰地组织标题材料

在此处输入图片描述

\documentclass[a4paper,12pt]{article}
\usepackage[portuguese]{babel}
\usepackage{graphicx}
\usepackage{float}
\usepackage{fancyvrb}
%%\usepackage{color}
\usepackage{multirow}
\usepackage{gensymb}
\usepackage{fullpage}
\usepackage{amsmath}
\usepackage{booktabs}
\usepackage[utf8]{inputenc}
\usepackage{fancyhdr,lastpage}
\usepackage{amsmath,mathtools}
\usepackage{bm}
\usepackage{enumerate}
\usepackage{scalefnt}
\usepackage{xcolor}

\usepackage{siunitx} % for '\si' macro
\usepackage{icomma}  % no extra space after decimal comma

%%\usepackage{subfigure} % don't load this package -- it's deprecated

\usepackage{wrapfig}

\usepackage{url}
\usepackage{hyperref}

\begin{document}
\section{Resultados obtidos}
\subsection{Intensidade do vidro}
\begin{table}[h]
$\begin{array}{@{}ccc@{}}
\toprule
\lambda & \text{Frequência} & \text{Intensidade}\\
(\si{\nano\meter}) & (\SI{e14}{\hertz}) & (\si{\percent}) \\
\midrule
300\pm1 &\mathllap{1}0,0000\pm0,0033 & 2,6\pm0,1\\
310\pm1 & 9,6774\pm0,0031 & 3,5\pm0,1\\
320\pm1 & 9,3750\pm0,0029 & 7,7\pm0,1\\
330\pm1 & 9,0909\pm0,0028 & 16,1\pm0,1\\
340\pm1 & 8,8235\pm0,0026 & 28,2\pm0,1\\
350\pm1 & 8,5714\pm0,0025 & 42,2\pm0,1\\
360\pm1 & 8,3333\pm0,0023 & 57,1\pm0,1\\
370\pm1 & 8,1081\pm0,0022 & 74,4\pm0,1\\
380\pm1 & 7,8947\pm0,0021 & 92,6\pm0,1\\
390\pm1 & 7,6923\pm0,0020 & 113,6\pm0,1\\
400\pm1 & 7,5000\pm0,0019 & 137,3\pm0,1\\ 
410\pm1 & 7,3171\pm0,0018 & 143,2\pm0,1\\
420\pm1 & 7,1429\pm0,0017 & 143,2\pm0,1\\
430\pm1 & 6,9767\pm0,0016 & 143,2\pm0,1\\
440\pm1 & 6,8182\pm0,0016 & 143,2\pm0,1\\
450\pm1 & 6,6667\pm0,0015 & 143,2\pm0,1\\
460\pm1 & 6,5217\pm0,0014 & 143,2\pm0,1\\
470\pm1 & 6,3830\pm0,0014 & 143,2\pm0,1\\
480\pm1 & 6,2500\pm0,0013 & 143,2\pm0,1\\
490\pm1 & 6,1224\pm0,0013 & 143,2\pm0,1\\
500\pm1 & 6,0000\pm0,0012 & 143,2\pm0,1\\
510\pm1 & 5,8824\pm0,0012 & 143,2\pm0,1\\
520\pm1 & 5,7692\pm0,0011 & 143,2\pm0,1\\
530\pm1 & 5,6604\pm0,0011 & 143,2\pm0,1\\
540\pm1 & 5,5556\pm0,0010 & 143,2\pm0,1\\
550\pm1 & 5,4545\pm0,0010 & 143,2\pm0,1\\ 
\bottomrule
\end{array}%
\hspace{\fill} % maximize horiz. separation
\begin{array}{@{}ccc@{}}
\toprule
\lambda & \text{Frequência} & \text{Intensidade}\\
(\si{\nano\meter}) & (\SI{e14}{\hertz}) & (\si{\percent}) \\
\midrule
560\pm1 & 5,3571\pm0,0010 &143,2\pm0,1\\
570\pm1 & 5,2632\pm0,0009 &143,2\pm0,1\\
580\pm1 & 5,1724\pm0,0009 &143,2\pm0,1\\
590\pm1 & 5,0847\pm0,0009 & 29,9\pm0,1\\
600\pm1 & 5,0000\pm0,0008 & 33,1\pm0,1\\
610\pm1 & 4,9180\pm0,0008 & 36,7\pm0,1\\
620\pm1 & 4,8387\pm0,0008 & 40,5\pm0,1\\
630\pm1 & 4,7619\pm0,0008 & 44,3\pm0,1\\
640\pm1 & 4,6875\pm0,0007 & 48,1\pm0,1\\
650\pm1 & 4,6154\pm0,0007 & 53,0\pm0,1\\
660\pm1 & 4,5455\pm0,0007 & 58,0\pm0,1\\
670\pm1 & 4,4776\pm0,0007 & 62,1\pm0,1\\
680\pm1 & 4,4118\pm0,0006 & 65,1\pm0,1\\
690\pm1 & 4,3478\pm0,0006 & 68,0\pm0,1\\
700\pm1 & 4,2857\pm0,0006 & 70,9\pm0,1\\
710\pm1 & 4,2254\pm0,0006 & 73,4\pm0,1\\
720\pm1 & 4,1667\pm0,0006 & 76,0\pm0,1\\
730\pm1 & 4,1096\pm0,0006 & 78,6\pm0,1\\
740\pm1 & 4,0541\pm0,0005 & 80,6\pm0,1\\
750\pm1 & 4,0000\pm0,0005 & 81,9\pm0,1\\
760\pm1 & 3,9474\pm0,0005 & 82,7\pm0,1\\
770\pm1 & 3,8961\pm0,0005 & 83,1\pm0,1\\
780\pm1 & 3,8462\pm0,0005 & 82,9\pm0,1\\
790\pm1 & 3,7975\pm0,0005 & 82,3\pm0,1\\
800\pm1 & 3,7500\pm0,0005 & 81,7\pm0,1\\ 
\bottomrule
\\  % blank line
\end{array}$

\caption{Comprimento de onda ($\lambda$), frequência e intensidade 
relativa do vidro sem amostra\slash filme.}
\end{table}
\end{document}

相关内容