缺少插入的 $ .\end{frame}

缺少插入的 $ .\end{frame}
  \begin{frame}{Calcolo classico}

       \vspace{-1cm}

    \begin{equation*}

    mv = \dfrac{E_{\gamma}}{c} + m(v-v_{R}); \qquad
       E_{e} + \dfrac{1}{2}mv^{2} = E_{f} + E_{\gamma} + \dfrac{1}{2}m(v-v_{R})^{2}\\
   \vspace{0.1cm}
         \textcolor{blue}{Ponendo:}\\
        E_{R} = \dfrac{1}{2}mv_{R}^{2} = \dfrac{E_{\gamma}^{2}}{2mc^{2}} \approx \dfrac{E_{0}^{2}}{2mc^{2}}; \qquad
        \vspace{0.1cm}
        E_{D} = mvv_{R} = \dfrac{E_{\gamma}v}{c} \approx  \dfrac{E_{0}v}{c}\\
           \vspace{0.1cm}
       \textcolor{blue}{ Otteniamo:}\\

        E_{\gamma}= E_{0} -E_{R} +E_{D}\\
           \vspace{0.3cm}
       \textcolor{blue}{ Per v=0, per avere fluorescenza di risonanza si deve avere:}\\
        2E_{R} \lesssim \Gamma \\ \textcolor{black}{(condizione non verificata per nuclei con E_{0}= 100KeV; A=100)}\\
           \end{equation*}
           \vspace{-1.5cm}
        \begin{equation*}

        \textcolor{blue}{Agitazione termica} \Rightarrow \delta v= \sqrt{\frac{k_{B}T}{m}} \Rightarrow \Gamma_{D} = \dfrac{E_{0}\delta v}{c}= \dfrac{E_{0}}{c}\sqrt{\frac{k_{B}T}{m}}\\ \textcolor{black}{(caso tipico nucleare \Gamma_{D}=10^{-3} eV)}  \\     

       \end{equation*}

  \end{frame}

答案1

这是多个问题的组合:

  • 不要在方程式中留下空行

  • 将每个方程式放入其自己的equation*环境中

  • 不要滥用\\换行符,如果你处于文本模式,请保留一个空行


\documentclass{beamer}

\begin{document}

\begin{frame}{Calcolo classico}

    \begin{equation*}
        mv = \dfrac{E_{\gamma}}{c} + m(v-v_{R}); \qquad
        E_{e} + \dfrac{1}{2}mv^{2} = E_{f} + E_{\gamma} + \dfrac{1}{2}m(v-v_{R})^{2}
    \end{equation*}

    \textcolor{blue}{Ponendo:}

    \begin{equation*}         
        E_{R} = \dfrac{1}{2}mv_{R}^{2} = \dfrac{E_{\gamma}^{2}}{2mc^{2}} \approx \dfrac{E_{0}^{2}}{2mc^{2}}; 
    \end{equation*}

    % just the same for the remaining text

\end{frame}

\end{document}

答案2

对于需要多行数学运算的情况,例如,不能使用\\in , from 。这里有一个带有和from 的版本(包 loads 和 extends ),以及带有单位的数字的from 。equation*gather*amsmathgather*\shortintertextmathtoolsmathtoolsamsmath\SI{<number>}{<unit>}siunitx

\documentclass{beamer}
\usepackage{mathtools}
\usepackage{siunitx}

\begin{document}

\begin{frame}

\frametitle{Calcolo classico}

\begin{gather*}
    mv = \frac{E_{\gamma}}{c} + m(v-v_{R}); \qquad
       E_{e} + \frac{1}{2}mv^{2} = E_{f} + E_{\gamma} + \frac{1}{2}m(v-v_{R})^{2}\\
   \shortintertext{\textcolor{blue}{Ponendo:}}
   E_{R} = \frac{1}{2}mv_{R}^{2} = \frac{E_{\gamma}^{2}}{2mc^{2}} \approx \frac{E_{0}^{2}}{2mc^{2}}; \qquad
   E_{D} = mvv_{R} = \frac{E_{\gamma}v}{c} \approx  \frac{E_{0}v}{c}\\
   \shortintertext{\textcolor{blue}{ Otteniamo:}}
   E_{\gamma}= E_{0} -E_{R} +E_{D}\\
   \shortintertext{\textcolor{blue}{Per $v=0$, per avere fluorescenza di risonanza si deve avere:}}
    2E_{R} \lesssim \Gamma \\
   \shortintertext{\textcolor{black}{(condizione non verificata per nuclei con $E_{0}= \SI{100}{\kilo\eV}$; $A=100$)}}
\textcolor{blue}{\text{Agitazione termica}} \Rightarrow \delta v= \sqrt{\frac{k_{B}T}{m}} \Rightarrow \Gamma_{D} = \frac{E_{0}\delta v}{c}= \frac{E_{0}}{c}\sqrt{\frac{k_{B}T}{m}}
\end{gather*}
(caso tipico nucleare $\Gamma_{D}=\SI{e-3}{\eV}$)

\end{frame}
\end{document}

相关内容