\documentclass{tudelft-report}
\usepackage[utf8]{inputenc}
\usepackage{algorithm,algorithmicx,algpseudocode}
\begin{algorithm}
\caption{cICA}\label{cICA}
\begin{algorithmic}[1]
\Procedure{cICA}{}\Comment{The procedure of cICA}
\State \textbf{Initialization} $b$\Comment{Initialize the parameters}
\begin{align*}
\mu& = 1 \quad \lambda = 1\\
\gamma& = 1 \quad \eta = 1\\
threshold& = 0.00001 \quad flag =1\\
\end{align*}
\While{$r\not=0$}\Comment{stop the loop when the changed value of weighted
vector is larger than threshold}
\State $\mu_{t} = max\{0,\mu_{t-1}+\gamma g(w_{t-1})\}$
\State $\lambda_{t} = \lambda_{t-1}+\gamma h(w_{t-1})$
\State $\Gamma_{1} = \overline{\rho}E\{zG'_{y}(y)\} - \frac{1}{2}\mu E\{zg'_{y}(y)\}-\lambda E\{zy\}$
\State $\Gamma_{2} = \overline{\rho}E\{G"_{y^{2}}(y)\} - \frac{1}{2}\mu E\{g"_{y^{2}}(y)\}-\lambda$
\If{$norm(w_{k} - w_{k-1}) < threshold$ }
\State flag = 0;
\Else
\State flag = 1;
\EndIf
\EndWhile\label{euclidendwhile}
\State \textbf{return} $w$\Comment{The optimal weight vector $w$}
\EndProcedure
\end{algorithmic}
\end{algorithm}
当我在 algorithmicx 中使用注释命令时,文本开头总是会出现一个方框。anaynoe 能帮我解决这个问题吗?
答案1
你可以重新定义方式算法的\Comment
作品使用
\algrenewcommand\algorithmiccomment[1]{\hfill #1}
根据这个答案,的默认行为\Comment
是插入\hfill \(\triangleright\)
。以上将其重新定义为不渲染符号。您也可以使用任何其他符号。
documentclass{tudeflt-report}
当用另一个文档类(例如)替换时\documentclass{article}
,三角形被正确呈现(而不是盒子),因此这可能是所用文档类的问题。
\documentclass{article}
\usepackage[utf8]{inputenc}
\usepackage{algorithm,algorithmicx,algpseudocode}
\algrenewcommand\algorithmiccomment[1]{\hfill #1}
\begin{document}
\begin{algorithm}
\caption{cICA}\label{cICA}
\begin{algorithmic}[1]
\Procedure{cICA}{}\Comment{The procedure of cICA}
\State \textbf{Initialization} $b$ \Comment{Initialize the parameters}
\begin{align*}
\mu& = 1 \quad \lambda = 1\\
\gamma& = 1 \quad \eta = 1\\
threshold& = 0.00001 \quad flag =1\\
\end{align*}
\While{$r\not=0$}\Comment{stop the loop when the changed value of weighted
vector is larger than threshold}
\State $\mu_{t} = max\{0,\mu_{t-1}+\gamma g(w_{t-1})\}$
\State $\lambda_{t} = \lambda_{t-1}+\gamma h(w_{t-1})$
\State $\Gamma_{1} = \overline{\rho}E\{zG'_{y}(y)\} - \frac{1}{2}\mu E\{zg'_{y}(y)\}-\lambda E\{zy\}$
\State $\Gamma_{2} = \overline{\rho}E\{G"_{y^{2}}(y)\} - \frac{1}{2}\mu E\{g"_{y^{2}}(y)\}-\lambda$
\If{$norm(w_{k} - w_{k-1}) < threshold$ }
\State flag = 0;
\Else
\State flag = 1;
\EndIf
\EndWhile\label{euclidendwhile}
\State \textbf{return} $w$\Comment{The optimal weight vector $w$}
\EndProcedure
\end{algorithmic}
\end{algorithm}
\end{document}