\documentclass{article}
\usepackage[utf8]{inputenc}
\begin{document}
\noindent Consider $ w= 2(\cos{\frac{\pi}{3}} + i\sin{\frac{\pi}{3}})$
\begin{enumerate}
\item[(a) (i)] Express $w^2$ and $w^3$ in modulus-argument form.
\item[\hspace{1em}(ii)] Sketch on an Argand Diagram the points represented by $w^0, w^1, w^2, w^3$ \\
\noindent These four points form the vertices of a quadrilateral, $Q$.
\item[(b)] Show that
\end{enumerate}
\end{document}
答案1
使用enumitem
的label
键值来指定每个嵌套级别:
\documentclass{article}
\usepackage{enumitem}
\begin{document}
\noindent Consider $w = 2(\cos{\frac{\pi}{3}} + i\sin{\frac{\pi}{3}})$.
\begin{enumerate}[label = (\alph*)]
\item
\begin{enumerate}[label = (\roman*)]
\item Express $w^2$ and $w^3$ in modulus-argument form.
\item Sketch on an Argand Diagram the points represented by $w^0, w^1, w^2, w^3$. \\
\noindent These four points form the vertices of a quadrilateral, $Q$.
\end{enumerate}
\item Show that \ldots
\end{enumerate}
\end{document}