我想
在选定的框内写命题、引理、定理、推论,而不在框内写定义,所有定义都使用连续编号。我搜索了类似的帖子,找到了一些东西,但都没有框。
所以,
1)有什么办法可以解决这个问题吗?
2) 有没有办法在这些框中写“定理 1.0.1”而不是“1.0.1 定理”?
例如:定理 1.0.1,定义 1.0.2。引理 1.0.3,定义 1.0.4,...
\documentclass[10pt,a4paper]{book}
\usepackage{tcolorbox}
\tcbuselibrary{theorems}
\tcbuselibrary{skins}
\usepackage[english,greek]{babel}
\renewcommand{\rmdefault}{udidot}
\newtcbtheorem[number within=section]{thm}{Θεώρημα}{
theorem style=change apart,
enhanced jigsaw,% <--- jigsaw
sharp corners,
boxrule=0pt,
toprule=1pt,bottomrule=1pt,
left=0.2cm,right=0.2cm,top=0.2cm,
titlerule=0.5em,
toptitle=0.1cm,
bottomtitle=-0.1cm,
colframe=white!25!black,colback=white,coltitle=white,
%title style={white!25!black}, & <---- remove
fonttitle=\bfseries,fontupper=\normalsize}{thm}
\newtcbtheorem[number within=thm]{prop}{Πρόταση}{
theorem style=change apart,
enhanced jigsaw,% <--- jigsaw
sharp corners,
boxrule=0pt,
toprule=1pt,bottomrule=1pt,
left=0.2cm,right=0.2cm,top=0.2cm,
titlerule=0.5em,
toptitle=0.1cm,
bottomtitle=-0.1cm,
colframe=white!25!black,colback=white,coltitle=white,
%title style={white!25!black}, & <---- remove
fonttitle=\bfseries,fontupper=\normalsize}{prop}
\begin{document}
\chapter{Hi}
\begin{thm}{\greektext Stokes}{stokes}
Let $D$ be a regular domain in an oriented $n$-dimensional manifold $M$,
and let $\omega$ be a smooth $(n-1)$ form of compact support. Then
\[\int_D d\omega = \int_{\partial D} \omega.\] \greektext Και δηλαδή τι άλλα;
\end{thm}
\begin{prop}{}{}
sdfasdasdasd
\end{prop}
\end{document}
答案1
要连续编号,请使用选项use counter from={...}
。
如果要获得不在盒子内的定义,您可以使用 创建一个非盒子tcolorbox
。
正如 Sigur 在他的/她的评论中所写,要写“定理 1.0.1”而不是“1.0.1 定理”,只需省略即可theorem style=change apart
。
您可以轻松地找到所有这些选项在做得很好tcolorbox
包装手册。
\documentclass[10pt,a4paper]{book}
\usepackage[english,greek]{babel}
\usepackage[utf8x]{inputenc}
\usepackage{tcolorbox}
\tcbuselibrary{theorems}
\tcbuselibrary{skins}
\renewcommand{\rmdefault}{udidot}
\newtcbtheorem[number within=section]{thm}{\greektext Θεώρημα}{
% theorem style=change apart,
enhanced jigsaw,% <--- jigsaw
sharp corners,
boxrule=0pt,
toprule=1pt,
bottomrule=1pt,
left=0.2cm,right=0.2cm,top=0.2cm,
titlerule=0.5em,
toptitle=0.1cm,
bottomtitle=-0.1cm,
colframe=white!25!black,colback=white,coltitle=white,
%title style={white!25!black}, & <---- remove
fonttitle=\bfseries,fontupper=\normalsize}{thm}
\newtcbtheorem[number within=section,use counter from=thm]{prop}{\greektext Πρόταση}{
% theorem style=change apart,
enhanced jigsaw,% <--- jigsaw
sharp corners,
boxrule=0pt,
toprule=1pt,bottomrule=1pt,
left=0.2cm,right=0.2cm,top=0.2cm,
titlerule=0.5em,
toptitle=0.1cm,
bottomtitle=-0.1cm,
colframe=white!25!black,colback=white,coltitle=white,
%title style={white!25!black}, & <---- remove
fonttitle=\bfseries,fontupper=\normalsize}{prop}
\newtcbtheorem[number within=section,use counter from=thm]{defin}{Definition}{
boxrule=0pt,
boxsep=0pt,
left=0pt,right=0pt,
titlerule=0pt,
colframe=white,
coltitle=black,
colbacktitle=white,
colback=white,
fonttitle=\bfseries,fontupper=\normalsize}{defin}
\begin{document}
\selectlanguage{english}
\chapter{Hi}
\begin{thm}{\greektext Stokes}{stokes}
Let $D$ be a regular domain in an oriented $n$-dimensional manifold $M$,
and let $\omega$ be a smooth $(n-1)$ form of compact support. Then
\[\int_D d\omega = \int_{\partial D} \omega.\] \greektext Και δηλαδή τι άλλα;
\end{thm}
\begin{prop}{}{}
sdfasdasdasd
\end{prop}
\begin{defin}{}{}
The definition is not boxed
\end{defin}
\end{document}