自从几周前我上次发帖以来,我已经写了大约 10 个小时的 LaTeX。我想我已经掌握了窍门。我正在完成家庭作业,我的文档看起来有点混乱。有没有更好的方法来缩进长列表?
\documentclass{article}
\usepackage{amsmath}
\begin{document}
\textbf{6)} Suppose we roll a fair 6 sided die with the number [1,6] written on them. After the first die roll we roll the die $k$ times where $k$ is the number on the first die roll. The number of points you score is the sum of the face-values on all die rolls (including the first). What is the expected number of points you will score?
There are six different cases for the first roll
\textbf{Case 1: Roll 1}
\begin{itemize}
\item $P(D_1=1) =\frac{1}{6}$
\item The expected number on the next roll is $E(D_2)=\frac{1}{6}\times(1+2+3+4+5+6)=3.5$
\item $E(S_1) = 3.5+1=4.5$ points
\end{itemize}
\textbf{Case 2: Roll 2}
\begin{itemize}
\item We know what the expected value of one roll is, and since rolling the die is independent we can use the previous expected value for the next roll.
\item $E(S_2) = (3.5\times 2)+2=9$ points
\end{itemize}
\textbf{Case 3: Roll 3}
\begin{itemize}
\item$E(S_3) = (3.5\times 3)+3=13.5$ points
\end{itemize}
\textbf{Case 4: Roll 4}
\begin{itemize}
\item $E(S_4) = (3.5\times 4)+4=18$ points
\end{itemize}
\textbf{Case 5: Roll 5}
\begin{itemize}
\item $E(S_5) = (3.5\times 5)+5=22.5$ points
\end{itemize}
\textbf{Case 6: Roll 6}
\begin{itemize}
\item $E(S_6) = (3.5\times 6)+6=27$ points
\end{itemize}
Therefore, the expected number of points scored is
\begin{align}
=\frac{1}{6}\times(4.5+9+13.5+18+22.5+27)=15.75 \notag
\end{align}
\end{document}
答案1
这个怎么样?里面有enumerate
一张单曲。itemize
\documentclass{article}
\usepackage{amsmath}
\usepackage{enumitem}
\usepackage{showframe}
\begin{document}
\textbf{6)} Suppose we roll a fair 6 sided die with the number [1,6] written on them. After the first die roll we roll the die $k$ times where $k$ is the number on the first die roll. The number of points you score is the sum of the face-values on all die rolls (including the first). What is the expected number of points you will score?
There are six different cases for the first roll
\begin{enumerate}[label={\bfseries Case \arabic*:},leftmargin=1.5cm]
\item Roll 1
\begin{itemize}
\item $P(D_1=1) =\frac{1}{6}$
\item The expected number on the next roll is $E(D_2)=\frac{1}{6}\times(1+2+3+4+5+6)=3.5$
\item $E(S_1) = 3.5+1=4.5$ points
\end{itemize}
\item Roll 2
\begin{itemize}
\item We know what the expected value of one roll is, and since rolling the die is independent we can use the previous expected value for the next roll.
\item $E(S_2) = (3.5\times 2)+2=9$ points
\end{itemize}
\item Roll 3
\begin{itemize}
\item$E(S_3) = (3.5\times 3)+3=13.5$ points
\end{itemize}
\item Roll 4
\begin{itemize}
\item $E(S_4) = (3.5\times 4)+4=18$ points
\end{itemize}
\item Roll 5
\begin{itemize}
\item $E(S_5) = (3.5\times 5)+5=22.5$ points
\end{itemize}
\item Roll 6
\begin{itemize}
\item $E(S_6) = (3.5\times 6)+6=27$ points
\end{itemize}
\end{enumerate}
Therefore, the expected number of points scored is
\begin{align}
=\frac{1}{6}\times(4.5+9+13.5+18+22.5+27)=15.75 \notag
\end{align}
\end{document}