从定义中删除间距

从定义中删除间距

我正在尝试删除定义之间的过多空格。

\documentclass[11pt, a4paper]{article}
\usepackage{eurosym}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{bm}
\usepackage{amsfonts, graphicx, verbatim, amsmath,amssymb}
\usepackage{color}
\usepackage{lipsum}
\usepackage{array}
\usepackage{setspace}

\setcounter{MaxMatrixCols}{10}
%TCIDATA{OutputFilter=Latex.dll}
%TCIDATA{Version=5.50.0.2953}
%TCIDATA{<META NAME="SaveForMode" CONTENT="1">}
%TCIDATA{BibliographyScheme=Manual}
%TCIDATA{LastRevised=Sunday, November 26, 2017 16:01:29}
%TCIDATA{<META NAME="GraphicsSave" CONTENT="32">}

\setlength{\textheight}{22cm}\setlength{\textwidth}{16cm}
\setlength{\topmargin}{-1.5cm}
\setlength{\oddsidemargin}{-0.5cm}\setlength{\evensidemargin}{-0.5cm}
\providecommand{\U}[1]{\protect\rule{.1in}{.1in}}
\setlength{\textheight}{24cm}\setlength{\textwidth}{16.5cm}
\setlength{\topmargin}{-1.5cm}
\setlength{\oddsidemargin}{0.5cm}\setlength{\evensidemargin}{0.5cm}
\newtheorem{theorem}{Theorem}[section]
\newtheorem{acknowledgement}[theorem]{Acknowledgement}
\newtheorem{algorithm}[theorem]{Algorithm}
\newtheorem{axiom}[theorem]{Axiom}
\newtheorem{case}[theorem]{Case}
\newtheorem{claim}[theorem]{Claim}
\newtheorem{Theorem}[theorem]{Theorem}
\newtheorem{conclusion}[theorem]{Conclusion}
\newtheorem{condition}[theorem]{Condition}
\newtheorem{conjecture}[theorem]{Conjecture}
\newtheorem{corollary}[theorem]{Corollary}
\newtheorem{corol}[theorem]{Corollary}
\newtheorem{Fact}[theorem]{Fact}
\newtheorem{Corollary}[theorem]{Corollary}
\newtheorem{criterion}[theorem]{Criterion}
\newtheorem{definition}[theorem]{Definition}
\newtheorem{Definition}[theorem]{Definition}
\newtheorem{example}[theorem]{Example}
\newtheorem{exercise}[theorem]{Exercise}
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{Lemma}[theorem]{Lemma}
\newtheorem{fact}[theorem]{Fact}
\newtheorem{lma}[theorem]{Lemma}
\newtheorem{notation}[theorem]{Notation}
\newtheorem{problem}[theorem]{Problem}
\newtheorem{proposition}[theorem]{Proposition}
\newtheorem{prop}[theorem]{Proposition}
\newtheorem{Property}[theorem]{Property}
\newtheorem{property}[theorem]{Property}
\newtheorem{remark}[theorem]{Remark}
\newtheorem{Comment}[theorem]{Comment}
\newtheorem{solution}[theorem]{Solution}
\newtheorem{summary}[theorem]{Summary}
\newenvironment{proof}[1][Proof]{\textbf{#1.} }{\ \rule{0.5em}{0.5em}}
\newcommand{\ve}{\varepsilon}
\newcommand{\cvgpr}{\xrightarrow{\text{\upshape\tiny P}}}
\newcommand{\cvgdist}{\xrightarrow{\mathrm{d}}}
\newcommand{\G}{{\mathcal{G}}}
\newcommand{\Kx}{{\cal K}}
\newcommand{\tod}{\to^{\cal D}}
\newcommand{\ls}{\limsup_{n\to\infty}}
\newcommand{\rE}{\mathbb{E}}
\newcommand{\A}{{\mathcal{A}}}
\newcommand{\rP}{\mathbb{P}}
\newcommand{\p}{{\mathbb{P}}}
\newcommand{\Z}{{\mathbb{Z}}}
\newcommand{\Be}{{\rm Be}}
\newcommand{\re}{\mathrm{e}}
\newcommand{\ep}{\varepsilon}
\newcommand{\Bin}{{\rm Bin}}
\newcommand{\qand}{\quad\mbox{and}\quad}
\newcommand{\quso}{\quad\mbox{so}\quad}
\newcommand{\Nn}{{\bf N}}
\newcommand{\St}{\underline{\rm S}}
\newcommand{\Rt}{\underline{\rm R}}
\newcommand{\It}{\underline{\rm I}}
\newcommand{\one}{{\bf 1}}
\newcommand{\Ups}{{\Upsilon}}
\newcommand{\iu}{{i\mkern1mu}}
\newcommand{\II}{{\mathcal{I}}}
\newcommand{\Var}{{\rm Var}}
\newcommand{\var}{{\rm Var}}
\newcommand{\Cov}{{\rm cov}}
\newcommand{\cov}{{\rm cov}}
\newcommand{\corr}{{\rm corr}}
\newcommand{\lhs}{{\rm lhs}}
\newcommand{\rhs}{{\rm rhs}}
\newcommand{\ra}{\rightarrow}
\newcommand{\I}{{\mathbf 1}}
\newcommand{\R}{{\mathbb R}}
\newcommand{\N}{{\mathbb N}}
\newcommand{\LL}{{\mathbb L}}
\newcommand{\E}{{\mathbb{E}}}
\newcommand{\bin}{{\rm Bin}}
\newcommand{\Pois}{{\rm Pois}}
\newcommand{\Po}{{\rm Pois}}
\newcommand{\Bi}{{\cal B}}
\newcommand{\ri}{\mathrm{i}}
\newcommand{\rd}{\mathrm{d}}
\newcommand{\XXi}{\Xi_{k,m}^{(n)}}
\newcommand{\xxi}{\bar{\xi}}
\newcommand{\qedhere}{{\diamond}}
\newcommand{\eqdef}{\stackrel{\mathrm{def}}{=}}
\newcommand{\eqdist}{\stackrel{\mathrm{D}}{=}}
\newcommand{\braket}[2]{{\langle{#1|#2}\rangle}}
\newcommand{\independent}{\perp}
\newcommand{\bb}{\begin{eqnarray*}}
\newcommand{\ee}{\end{eqnarray*}}
\newcommand{\bbb}{\begin{eqnarray}}
\newcommand{\eee}{\end{eqnarray}}
\newcommand{\F}{{\mathcal{F}}}
\newcommand{\qed}{$\diamond$}
\parindent 0pt
\setlength{\parindent}{0pt}
%\newcommand{\forceindent}{\leavevmode{\parindent=3em\indent

\begin{document}
\section{Introduction}
We shall go over some basic knowledge hence we begin by giving some definitions. 
\begin{definition} 
A group is a set $G$ together with a binary operation $*$ on $G$ satisfying
the following properties:\\
\doublespacing{(G1) Closure:     $\forall x,y \in G, x * y \in G.$\\
(G2) Associativity:  $\forall x,y, z \in G, (x * y) * z = x * (y * z).$\\
(G3) Identity:   There is an element $e \in G$ such that $e * x = x * e = x$ for all $x \in G.$\\
(G4) Inverses:   For any $x \in G$ there is an element $y \in G$ such that $x * y = y * x = e.$\\}
\end{definition}
\end{document}

现在我想删除显示“属性”的“额外”空格,方法是将其向上移动一行,其余部分保持不变

编辑:我想补充以下几点:

\begin{definition}
A group $G$ is called an abelian group if the following axiom is satisfied:\\

(G5) Commutativity: $\forall x,y \in G, x * y = y * x.$
\end{definition}

答案1

您应该首先删除序言中的大部分代码,只定义真正需要的命令和结构。

顺便说一句,诸如\rm和之类的命令\cal已经被弃用了二十年。

不要\\在标准文本中用于结束段落。定义中的项目间距最好使用enumerate而不是\doublespacing(这是不是一个带有参数的命令)。

\documentclass[11pt, a4paper]{article}
\usepackage{amsmath,amsthm,enumitem}

\newtheorem{theorem}{Theorem}[section]

\theoremstyle{definition}
\newtheorem{definition}[theorem]{Definition}

\begin{document}

\section{Introduction}

We shall go over some basic knowledge hence we begin by giving some definitions. 

\begin{definition} 
A group is a set $G$ together with a binary operation $*$ on $G$ satisfying
the following properties:
\begin{enumerate}[label=(G\arabic*)]
\item Closure: $\forall x,y \in G, x * y \in G$.
\item Associativity: $\forall x,y, z \in G, (x * y) * z = x * (y * z)$.
\item Identity: There is an element $e \in G$ such that $e * x = x * e = x$ for all $x \in G$.
\item Inverses: For any $x \in G$ there is an element $y \in G$ such that $x * y = y * x = e$.
\end{enumerate}
\end{definition}

\end{document}

在此处输入图片描述

enumitem软件包有几个特点,series例如resume

\documentclass[11pt, a4paper]{article}
\usepackage{amsmath,amsthm,enumitem}

\newtheorem{theorem}{Theorem}[section]

\theoremstyle{definition}
\newtheorem{definition}[theorem]{Definition}

\begin{document}

\section{Introduction}

We shall go over some basic knowledge hence we begin by giving some definitions. 

\begin{definition} 
A group is a set $G$ together with a binary operation $*$ on $G$ satisfying
the following properties:
\begin{enumerate}[label=(G\arabic*),series=group]
\item Closure: $\forall x,y \in G, x * y \in G$.
\item Associativity: $\forall x,y, z \in G, (x * y) * z = x * (y * z)$.
\item Identity: There is an element $e \in G$ such that $e * x = x * e = x$ for all $x \in G$.
\item Inverses: For any $x \in G$ there is an element $y \in G$ such that $x * y = y * x = e$.
\end{enumerate}
\end{definition}

\begin{definition}
A group $G$ is called an abelian group if the following axiom is satisfied:
\begin{enumerate}[label=(G\arabic*),resume=group]
\item Commutativity: $\forall x,y \in G, x * y = y * x$.
\end{enumerate}
\end{definition}

\end{document}

在此处输入图片描述

相关内容