我的代码:
\documentclass{article}
\usepackage[a0paper]{geometry}
\usepackage{amsmath}
\usepackage{siunitx}
\usepackage{diagbox,array}
\newlength{\setsize}
\begin{document}
\settowidth{\setsize}{$\pm\dfrac{\sqrt{x}\pm\sqrt{y}}{z}$}
\newcommand{\setstruct}{\vphantom{$\left|\rule{0pt}{\dimexpr0.5\setsize+\tabcolsep}\right.$}}
\newcommand{\setlabel}{\diagbox[dir=NE]{$\theta_1$}{$\theta_2$}}
\begin{table}
\centering
\begin{tabular}{|c||*{17}{>{\setstruct$\displaystyle}w{c}{\setsize}<{$}|}}
\hline
\setlabel & 0 & $\frac{\pi}{6}$ & $\frac{\pi}{4}$ & $\frac{\pi}{3}$ & $\frac{\pi}{2}$ & $\frac{2}{3}\pi$ & $\frac{3}{4}\pi$ & $\frac{5}{6}\pi$ & $\pi$ & $\frac{7}{6}\pi$ & $\frac{5}{4}\pi$ & $\frac{4}{3}\pi$ & $\frac{3}{2}\pi$ & $\frac{5}{3}\pi$ & $\frac{7}{4}\pi$ & $\frac{11}{6}\pi$ & $2\pi$ \\
\hline \hline
0 & -1 & -\frac{\sqrt{3}}{2} & -\frac{1}{\sqrt{2}} & -\frac{1}{2} & 0 & \frac{1}{2} & \frac{1}{\sqrt{2}} & \frac{\sqrt{3}}{2} & 1 & \frac{\sqrt{3}}{2} & \frac{1}{\sqrt{2}} & \frac{1}{2} & 0 & -\frac{1}{2} & -\frac{1}{\sqrt{2}} & -\frac{\sqrt{3}}{2} & -1 \\
\hline
$\frac{\pi}{6}$ & -\frac{\sqrt{3}}{2} & -\frac{1}{2} & -\frac{\sqrt{6}-\sqrt{2}}{4} & 0 & \frac{1}{2} & \frac{\sqrt{3}}{2} & \frac{\sqrt{6}+\sqrt{2}}{4} & 1 & \frac{\sqrt{3}}{2} & \frac{1}{2} & \frac{\sqrt{6}-\sqrt{2}}{4} & 0 & -\frac{1}{2} & -\frac{\sqrt{3}}{2} & -\frac{\sqrt{6}+\sqrt{2}}{4} & -1 & -\frac{\sqrt{3}}{2} \\
\hline
$\frac{\pi}{4}$ & -\frac{1}{\sqrt{2}} & -\frac{\sqrt{6}+\sqrt{2}}{4} & 0 & \frac{\sqrt{6}-\sqrt{2}}{4} & \frac{1}{\sqrt{2}} & \frac{\sqrt{6}+\sqrt{2}}{4} & 1 & \frac{\sqrt{6}+\sqrt{2}}{4} & \frac{1}{\sqrt{2}} & \frac{\sqrt{6}-\sqrt{2}}{4} & 0 & -\frac{\sqrt{6}-\sqrt{2}}{4} & -\frac{1}{\sqrt{2}} & -\frac{\sqrt{6}+\sqrt{2}}{4} & -1 & -\frac{\sqrt{6}+\sqrt{2}}{4} & -\frac{1}{\sqrt{2}} \\
\hline
$\frac{\pi}{3}$ & -\frac{1}{2} & 0 & \frac{\sqrt{6}-\sqrt{2}}{4} & \frac{1}{2} & \frac{\sqrt{3}}{2} & 1 & \frac{\sqrt{6}+\sqrt{2}}{4} & \frac{\sqrt{3}}{2} & \frac{1}{2} & 0 & -\frac{\sqrt{6}-\sqrt{2}}{4} & -\frac{1}{2} & -\frac{\sqrt{3}}{2} & -1 & -\frac{\sqrt{6}+\sqrt{2}}{4} & -\frac{\sqrt{3}}{2} & -\frac{1}{2} \\
\hline
$\frac{\pi}{2}$ & 0 & \frac{1}{2} & \frac{1}{\sqrt{2}} & \frac{\sqrt{3}}{2} & 1 & \frac{\sqrt{3}}{2} & \frac{1}{\sqrt{2}} & \frac{1}{2} & 0 & -\frac{1}{2} & -\frac{1}{\sqrt{2}} & -\frac{\sqrt{3}}{2} & -1 & -\frac{\sqrt{3}}{2} & -\frac{1}{\sqrt{2}} & -\frac{1}{2} & 0 \\
\hline
$\frac{2}{3}\pi$ & \frac{1}{2} & \frac{\sqrt{3}}{2} & \frac{\sqrt{6}+\sqrt{2}}{4} & 1 & \frac{\sqrt{3}}{2} & \frac{1}{2} & \frac{\sqrt{6}-\sqrt{2}}{4} & 0 & -\frac{1}{2} & -\frac{\sqrt{3}}{2} & -\frac{\sqrt{6}+\sqrt{2}}{4} & -1 & -\frac{\sqrt{3}}{2} & -\frac{1}{2} & -\frac{\sqrt{6}-\sqrt{2}}{4} & 0 & \frac{1}{2} \\
\hline
$\frac{3}{4}\pi$ & \frac{1}{\sqrt{2}} & \frac{\sqrt{6}+\sqrt{2}}{4} & 1 & \frac{\sqrt{6}+\sqrt{2}}{4} & \frac{1}{\sqrt{2}} & \frac{\sqrt{6}-\sqrt{2}}{4} & 0 & -\frac{\sqrt{6}-\sqrt{2}}{4} & -\frac{1}{\sqrt{2}} & -\frac{\sqrt{6}+\sqrt{2}}{4} & -1 & -\frac{\sqrt{6}+\sqrt{2}}{4} & -\frac{1}{\sqrt{2}} & -\frac{\sqrt{6}-\sqrt{2}}{4} & 0 & \frac{\sqrt{6}-\sqrt{2}}{4} & \frac{1}{\sqrt{2}} \\
\hline
$\frac{5}{6}\pi$ & \frac{\sqrt{3}}{2} & 1 & \frac{\sqrt{6}+\sqrt{2}}{4} & \frac{\sqrt{3}}{2} & \frac{1}{2} & 0 & -\frac{\sqrt{6}-\sqrt{2}}{4} & -\frac{1}{2} & -\frac{\sqrt{3}}{2} & -1 & -\frac{\sqrt{6}+\sqrt{2}}{4} & -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & \frac{\sqrt{6}-\sqrt{2}}{4} & \frac{1}{2} & \frac{\sqrt{3}}{2} \\
\hline
$\pi$ & 1 & \frac{\sqrt{3}}{2} & \frac{1}{\sqrt{2}} & \frac{1}{2} & 0 & -\frac{1}{2} & -\frac{1}{\sqrt{2}} & -\frac{\sqrt{3}}{2} & -1 & -\frac{\sqrt{3}}{2} & -\frac{1}{\sqrt{2}} & -\frac{1}{2} & 0 & \frac{1}{2} & \frac{1}{\sqrt{2}} & \frac{\sqrt{3}}{2} & 1 \\
\hline
$\frac{7}{6}\pi$ & \frac{\sqrt{3}}{2} & \frac{1}{2} & \frac{\sqrt{6}-\sqrt{2}}{4} & 0 & -\frac{1}{2} & -\frac{\sqrt{1}}{2} & -\frac{\sqrt{6}+\sqrt{2}}{4} & -1 & -\frac{\sqrt{3}}{2} & -\frac{1}{2} & -\frac{\sqrt{6}-\sqrt{2}}{4} & 0 & \frac{1}{2} & \frac{\sqrt{3}}{2} & \frac{\sqrt{6}+\sqrt{2}}{4} & 1 & \frac{\sqrt{3}}{2} \\
\hline
$\frac{5}{4}\pi$ & \frac{1}{\sqrt{2}} & \frac{\sqrt{6}-\sqrt{2}}{4} & 0 & -\frac{\sqrt{6}-\sqrt{2}}{4} & -\frac{1}{\sqrt{2}} & -\frac{\sqrt{6}+\sqrt{2}}{4} & -1 & -\frac{\sqrt{6}+\sqrt{2}}{4} & -\frac{1}{\sqrt{2}} & -\frac{\sqrt{6}-\sqrt{2}}{4} & 0 & \frac{\sqrt{6}-\sqrt{2}}{4} & \frac{1}{\sqrt{2}} & \frac{\sqrt{6}+\sqrt{2}}{4} & 1 & \frac{\sqrt{6}+\sqrt{2}}{4} & \frac{1}{\sqrt{2}} \\
\hline
$\frac{4}{3}\pi$ & \frac{1}{2} & 0 & -\frac{\sqrt{6}-\sqrt{2}}{4} & -\frac{1}{2} & -\frac{\sqrt{3}}{2} & -1 & -\frac{\sqrt{6}+\sqrt{2}}{4} & -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & \frac{\sqrt{6}-\sqrt{2}}{4} & \frac{1}{2} & \frac{\sqrt{3}}{2} & 1 & \frac{\sqrt{6}+\sqrt{2}}{4} & \frac{\sqrt{3}}{2} & \frac{1}{2} \\
\hline
$\frac{3}{2}\pi$ & 0 & -\frac{1}{2} & -\frac{1}{\sqrt{2}} & -\frac{\sqrt{3}}{2} & -1 & -\frac{\sqrt{3}}{2} & -\frac{1}{\sqrt{2}} & -\frac{1}{2} & 0 & \frac{1}{2} & \frac{1}{\sqrt{2}} & \frac{\sqrt{3}}{2} & 1 & \frac{\sqrt{3}}{2} & \frac{1}{\sqrt{2}} & \frac{1}{2} & 0 \\
\hline
$\frac{5}{3}\pi$ & -\frac{1}{2} & -\frac{\sqrt{3}}{2} & -\frac{\sqrt{6}+\sqrt{2}}{4} & -1 & -\frac{\sqrt{3}}{2} & -\frac{1}{2} & -\frac{\sqrt{6}-\sqrt{2}}{4} & 0 & \frac{1}{2} & \frac{1}{\sqrt{2}} & \frac{\sqrt{6}+\sqrt{2}}{4} & 1 & \frac{\sqrt{3}}{2} & \frac{1}{2} & \frac{\sqrt{6}-\sqrt{2}}{4} & 0 & -\frac{1}{2} \\
\hline
$\frac{7}{4}\pi$ & -\frac{1}{\sqrt{2}} & -\frac{\sqrt{6}+\sqrt{2}}{4} & -1 & -\frac{\sqrt{6}+\sqrt{2}}{4} & -\frac{1}{\sqrt{2}} & -\frac{\sqrt{6}-\sqrt{2}}{4} & 0 & \frac{\sqrt{6}-\sqrt{2}}{4} & \frac{1}{\sqrt{2}} & \frac{\sqrt{6}+\sqrt{2}}{4} & 1 & \frac{\sqrt{6}+\sqrt{2}}{4} & \frac{1}{\sqrt{2}} & \frac{\sqrt{6}-\sqrt{2}}{4} & 0 & -\frac{\sqrt{6}-\sqrt{2}}{4} & -\frac{1}{\sqrt{2}} \\
\hline
$\frac{11}{6}\pi$ & -\frac{\sqrt{3}}{2} & -1 & -\frac{\sqrt{6}+\sqrt{2}}{4} & -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & \frac{\sqrt{6}-\sqrt{2}}{4} & \frac{1}{2} & \frac{\sqrt{3}}{2} & 1 & \frac{\sqrt{6}+\sqrt{2}}{4} & \frac{\sqrt{3}}{2} & \frac{1}{2} & 0 & -\frac{\sqrt{6}-\sqrt{2}}{4} & -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
\hline
$2\pi$ & -1 & -\frac{\sqrt{3}}{2} & -\frac{1}{\sqrt{2}} & -\frac{1}{2} & 0 & \frac{1}{2} & \frac{1}{\sqrt{2}} & \frac{\sqrt{3}}{2} & 1 & \frac{\sqrt{3}}{2} & \frac{1}{\sqrt{2}} & \frac{1}{2} & 0 & -\frac{1}{2} & -\frac{1}{\sqrt{2}} & -\frac{\sqrt{3}}{2} & -1 \\
\hline
\end{tabular}
\end{table}
\end{document}
错误:
! Missing $ inserted.
<inserted text>
$
l.18 ... & 0 & $\frac{\pi}{6}
$ & $\frac{\p...
遗漏的点在哪里?我找不到它……
答案1
$
您的问题是,您通过表格标题在所有单元格(第一列除外)的开头和结尾添加,即>{\setstruct$\displaystyle}w{c}{\setsize}<{$}|}
。执行此操作时,您无法$ \frac{a}{b} $
在这些列中使用,我猜第一个$
会切换回数学模式,而\frac
处于文本模式。
您只需$
从表格的第一行删除所有内容,然后它就可以正常工作。
\documentclass{article}
\usepackage[a0paper]{geometry}
\usepackage{amsmath}
\usepackage{siunitx}
\usepackage{diagbox,array}
\newlength{\setsize}
\begin{document}
\settowidth{\setsize}{$\pm\dfrac{\sqrt{x}\pm\sqrt{y}}{z}$}
\newcommand{\setstruct}{\vphantom{$\left|\rule{0pt}{\dimexpr0.5\setsize+\tabcolsep}\right.$}}
\newcommand{\setlabel}{\diagbox[dir=NE]{$\theta_1$}{$\theta_2$}}
\begin{table}
\centering
\begin{tabular}{|c||*{17}{>{\setstruct$\displaystyle}w{c}{\setsize}<{$}|}}
\hline
\setlabel & 0 & \frac{\pi}{6} & \frac{\pi}{4} & \frac{\pi}{3} & \frac{\pi}{2} & \frac{2}{3}\pi & \frac{3}{4}\pi & \frac{5}{6}\pi & \pi & \frac{7}{6}\pi & \frac{5}{4}\pi & \frac{4}{3}\pi & \frac{3}{2}\pi & \frac{5}{3}\pi & \frac{7}{4}\pi & \frac{11}{6}\pi & 2\pi \\
\hline \hline
0 & -1 & -\frac{\sqrt{3}}{2} & -\frac{1}{\sqrt{2}} & -\frac{1}{2} & 0 & \frac{1}{2} & \frac{1}{\sqrt{2}} & \frac{\sqrt{3}}{2} & 1 & \frac{\sqrt{3}}{2} & \frac{1}{\sqrt{2}} & \frac{1}{2} & 0 & -\frac{1}{2} & -\frac{1}{\sqrt{2}} & -\frac{\sqrt{3}}{2} & -1 \\
\hline
$\frac{\pi}{6}$ & -\frac{\sqrt{3}}{2} & -\frac{1}{2} & -\frac{\sqrt{6}-\sqrt{2}}{4} & 0 & \frac{1}{2} & \frac{\sqrt{3}}{2} & \frac{\sqrt{6}+\sqrt{2}}{4} & 1 & \frac{\sqrt{3}}{2} & \frac{1}{2} & \frac{\sqrt{6}-\sqrt{2}}{4} & 0 & -\frac{1}{2} & -\frac{\sqrt{3}}{2} & -\frac{\sqrt{6}+\sqrt{2}}{4} & -1 & -\frac{\sqrt{3}}{2} \\
\hline
$\frac{\pi}{4}$ & -\frac{1}{\sqrt{2}} & -\frac{\sqrt{6}+\sqrt{2}}{4} & 0 & \frac{\sqrt{6}-\sqrt{2}}{4} & \frac{1}{\sqrt{2}} & \frac{\sqrt{6}+\sqrt{2}}{4} & 1 & \frac{\sqrt{6}+\sqrt{2}}{4} & \frac{1}{\sqrt{2}} & \frac{\sqrt{6}-\sqrt{2}}{4} & 0 & -\frac{\sqrt{6}-\sqrt{2}}{4} & -\frac{1}{\sqrt{2}} & -\frac{\sqrt{6}+\sqrt{2}}{4} & -1 & -\frac{\sqrt{6}+\sqrt{2}}{4} & -\frac{1}{\sqrt{2}} \\
\hline
$\frac{\pi}{3}$ & -\frac{1}{2} & 0 & \frac{\sqrt{6}-\sqrt{2}}{4} & \frac{1}{2} & \frac{\sqrt{3}}{2} & 1 & \frac{\sqrt{6}+\sqrt{2}}{4} & \frac{\sqrt{3}}{2} & \frac{1}{2} & 0 & -\frac{\sqrt{6}-\sqrt{2}}{4} & -\frac{1}{2} & -\frac{\sqrt{3}}{2} & -1 & -\frac{\sqrt{6}+\sqrt{2}}{4} & -\frac{\sqrt{3}}{2} & -\frac{1}{2} \\
\hline
$\frac{\pi}{2}$ & 0 & \frac{1}{2} & \frac{1}{\sqrt{2}} & \frac{\sqrt{3}}{2} & 1 & \frac{\sqrt{3}}{2} & \frac{1}{\sqrt{2}} & \frac{1}{2} & 0 & -\frac{1}{2} & -\frac{1}{\sqrt{2}} & -\frac{\sqrt{3}}{2} & -1 & -\frac{\sqrt{3}}{2} & -\frac{1}{\sqrt{2}} & -\frac{1}{2} & 0 \\
\hline
$\frac{2}{3}\pi$ & \frac{1}{2} & \frac{\sqrt{3}}{2} & \frac{\sqrt{6}+\sqrt{2}}{4} & 1 & \frac{\sqrt{3}}{2} & \frac{1}{2} & \frac{\sqrt{6}-\sqrt{2}}{4} & 0 & -\frac{1}{2} & -\frac{\sqrt{3}}{2} & -\frac{\sqrt{6}+\sqrt{2}}{4} & -1 & -\frac{\sqrt{3}}{2} & -\frac{1}{2} & -\frac{\sqrt{6}-\sqrt{2}}{4} & 0 & \frac{1}{2} \\
\hline
$\frac{3}{4}\pi$ & \frac{1}{\sqrt{2}} & \frac{\sqrt{6}+\sqrt{2}}{4} & 1 & \frac{\sqrt{6}+\sqrt{2}}{4} & \frac{1}{\sqrt{2}} & \frac{\sqrt{6}-\sqrt{2}}{4} & 0 & -\frac{\sqrt{6}-\sqrt{2}}{4} & -\frac{1}{\sqrt{2}} & -\frac{\sqrt{6}+\sqrt{2}}{4} & -1 & -\frac{\sqrt{6}+\sqrt{2}}{4} & -\frac{1}{\sqrt{2}} & -\frac{\sqrt{6}-\sqrt{2}}{4} & 0 & \frac{\sqrt{6}-\sqrt{2}}{4} & \frac{1}{\sqrt{2}} \\
\hline
$\frac{5}{6}\pi$ & \frac{\sqrt{3}}{2} & 1 & \frac{\sqrt{6}+\sqrt{2}}{4} & \frac{\sqrt{3}}{2} & \frac{1}{2} & 0 & -\frac{\sqrt{6}-\sqrt{2}}{4} & -\frac{1}{2} & -\frac{\sqrt{3}}{2} & -1 & -\frac{\sqrt{6}+\sqrt{2}}{4} & -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & \frac{\sqrt{6}-\sqrt{2}}{4} & \frac{1}{2} & \frac{\sqrt{3}}{2} \\
\hline
$\pi$ & 1 & \frac{\sqrt{3}}{2} & \frac{1}{\sqrt{2}} & \frac{1}{2} & 0 & -\frac{1}{2} & -\frac{1}{\sqrt{2}} & -\frac{\sqrt{3}}{2} & -1 & -\frac{\sqrt{3}}{2} & -\frac{1}{\sqrt{2}} & -\frac{1}{2} & 0 & \frac{1}{2} & \frac{1}{\sqrt{2}} & \frac{\sqrt{3}}{2} & 1 \\
\hline
$\frac{7}{6}\pi$ & \frac{\sqrt{3}}{2} & \frac{1}{2} & \frac{\sqrt{6}-\sqrt{2}}{4} & 0 & -\frac{1}{2} & -\frac{\sqrt{1}}{2} & -\frac{\sqrt{6}+\sqrt{2}}{4} & -1 & -\frac{\sqrt{3}}{2} & -\frac{1}{2} & -\frac{\sqrt{6}-\sqrt{2}}{4} & 0 & \frac{1}{2} & \frac{\sqrt{3}}{2} & \frac{\sqrt{6}+\sqrt{2}}{4} & 1 & \frac{\sqrt{3}}{2} \\
\hline
$\frac{5}{4}\pi$ & \frac{1}{\sqrt{2}} & \frac{\sqrt{6}-\sqrt{2}}{4} & 0 & -\frac{\sqrt{6}-\sqrt{2}}{4} & -\frac{1}{\sqrt{2}} & -\frac{\sqrt{6}+\sqrt{2}}{4} & -1 & -\frac{\sqrt{6}+\sqrt{2}}{4} & -\frac{1}{\sqrt{2}} & -\frac{\sqrt{6}-\sqrt{2}}{4} & 0 & \frac{\sqrt{6}-\sqrt{2}}{4} & \frac{1}{\sqrt{2}} & \frac{\sqrt{6}+\sqrt{2}}{4} & 1 & \frac{\sqrt{6}+\sqrt{2}}{4} & \frac{1}{\sqrt{2}} \\
\hline
$\frac{4}{3}\pi$ & \frac{1}{2} & 0 & -\frac{\sqrt{6}-\sqrt{2}}{4} & -\frac{1}{2} & -\frac{\sqrt{3}}{2} & -1 & -\frac{\sqrt{6}+\sqrt{2}}{4} & -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & \frac{\sqrt{6}-\sqrt{2}}{4} & \frac{1}{2} & \frac{\sqrt{3}}{2} & 1 & \frac{\sqrt{6}+\sqrt{2}}{4} & \frac{\sqrt{3}}{2} & \frac{1}{2} \\
\hline
$\frac{3}{2}\pi$ & 0 & -\frac{1}{2} & -\frac{1}{\sqrt{2}} & -\frac{\sqrt{3}}{2} & -1 & -\frac{\sqrt{3}}{2} & -\frac{1}{\sqrt{2}} & -\frac{1}{2} & 0 & \frac{1}{2} & \frac{1}{\sqrt{2}} & \frac{\sqrt{3}}{2} & 1 & \frac{\sqrt{3}}{2} & \frac{1}{\sqrt{2}} & \frac{1}{2} & 0 \\
\hline
$\frac{5}{3}\pi$ & -\frac{1}{2} & -\frac{\sqrt{3}}{2} & -\frac{\sqrt{6}+\sqrt{2}}{4} & -1 & -\frac{\sqrt{3}}{2} & -\frac{1}{2} & -\frac{\sqrt{6}-\sqrt{2}}{4} & 0 & \frac{1}{2} & \frac{1}{\sqrt{2}} & \frac{\sqrt{6}+\sqrt{2}}{4} & 1 & \frac{\sqrt{3}}{2} & \frac{1}{2} & \frac{\sqrt{6}-\sqrt{2}}{4} & 0 & -\frac{1}{2} \\
\hline
$\frac{7}{4}\pi$ & -\frac{1}{\sqrt{2}} & -\frac{\sqrt{6}+\sqrt{2}}{4} & -1 & -\frac{\sqrt{6}+\sqrt{2}}{4} & -\frac{1}{\sqrt{2}} & -\frac{\sqrt{6}-\sqrt{2}}{4} & 0 & \frac{\sqrt{6}-\sqrt{2}}{4} & \frac{1}{\sqrt{2}} & \frac{\sqrt{6}+\sqrt{2}}{4} & 1 & \frac{\sqrt{6}+\sqrt{2}}{4} & \frac{1}{\sqrt{2}} & \frac{\sqrt{6}-\sqrt{2}}{4} & 0 & -\frac{\sqrt{6}-\sqrt{2}}{4} & -\frac{1}{\sqrt{2}} \\
\hline
$\frac{11}{6}\pi$ & -\frac{\sqrt{3}}{2} & -1 & -\frac{\sqrt{6}+\sqrt{2}}{4} & -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & \frac{\sqrt{6}-\sqrt{2}}{4} & \frac{1}{2} & \frac{\sqrt{3}}{2} & 1 & \frac{\sqrt{6}+\sqrt{2}}{4} & \frac{\sqrt{3}}{2} & \frac{1}{2} & 0 & -\frac{\sqrt{6}-\sqrt{2}}{4} & -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
\hline
$2\pi$ & -1 & -\frac{\sqrt{3}}{2} & -\frac{1}{\sqrt{2}} & -\frac{1}{2} & 0 & \frac{1}{2} & \frac{1}{\sqrt{2}} & \frac{\sqrt{3}}{2} & 1 & \frac{\sqrt{3}}{2} & \frac{1}{\sqrt{2}} & \frac{1}{2} & 0 & -\frac{1}{2} & -\frac{1}{\sqrt{2}} & -\frac{\sqrt{3}}{2} & -1 \\
\hline
\end{tabular}
\end{table}
\end{document}