答案1
我认为你不需要任何特殊的东西。
\documentclass[fleqn]{article}
\usepackage{amsmath}
\usepackage{xcolor}
\newcommand{\dd}{\mathrm{d}}
\begin{document}
\begin{align*}
\left.\frac{\dd f}{\dd x}\right|_{x=3}&=\frac{1}{\sqrt{\dots}}
&
\textcolor{cyan}{
\begin{aligned}
\frac{\dd}{\dd x}\left(-(-25-x^2)\right)^{1/2} \\
= \dots
\end{aligned}}
\end{align*}
\begin{align*}
y^2&=x^2+\sin xy \\
\frac{\dd }{\dd x}\left(y^2\right)
&= \frac{\dd }{\dd x}\left(x^2\right) + \frac{\dd }{\dd x}\left(\sin xy\right)
& &\text{\textcolor{cyan}{\begin{tabular}{l}Differentiate both sides\\
w.r.t.\ $x$\end{tabular}}} \\
2y\frac{\dd y}{\dd x}
&= 2x+\cos(xy)\frac{\dd}{\dd x}(xy)
& &\text{\textcolor{cyan}{\begin{tabular}{l}Treating $y$ as a function \\
of $x$ and using the Chain Rule\end{tabular}}}
\end{align*}
\end{document}