以下是我的代码:
$$\begin{aligned} p(a) &=p(a) p(a \rightarrow a)+p(b) p(b \rightarrow a)+p(c) p(c \rightarrow a)+p(d) p(d \rightarrow a) \\
&={\scriptstyle \frac{1}{2} \frac{2}{3}+\frac{1}{4} \frac{1}{3}+\frac{1}{3}+\frac{1}{3}=\frac{1}{2}}
\end{aligned}$$
$$\begin{aligned} p(b) &=p(a) p(a \rightarrow b)+p(b) p(b \rightarrow b)+p(c) p(c \rightarrow b) \\
&={\scriptstyle\frac{1}{2} \frac{1}{6}+\frac{1}{4} \frac{1}{2}+\frac{1}{3} \frac{1}{3}=\frac{1}{4}} \end{aligned}$$
$$\begin{aligned} p(c) &=p(a) p(a \rightarrow c)+p(b) p(b \rightarrow c)+p(c) p(c \rightarrow c)+p(d) p(d \rightarrow c) \\
&={\scriptstyle\frac{1}{2} \frac{1}{12}+\frac{1}{4} \frac{1}{6}+\frac{1}{8} 0+\frac{1}{8}=\frac{1}{8}} \end{aligned}$$
$$\begin{aligned} p(d) &=p(a) p(a \rightarrow d)+p(c) p(c \rightarrow d)+p(d) p(d \rightarrow d) \\
&={\scriptstyle\frac{1}{2} \frac{1}{12}+\frac{1}{8} \frac{1}{3}+\frac{1}{8} \frac{1}{3}=\frac{1}{3}} \end{aligned}$$
谁能告诉我我该做什么?
答案1
这是一个建议
\documentclass{article}
\usepackage{amsmath}
\begin{document}
\begin{align*}
p(a)&=p(a) p(a \rightarrow a)+p(b) p(b \rightarrow a)+p(c) p(c \rightarrow a)+p(d) p(d \rightarrow a)\\
&\;={\scriptstyle \frac{1}{2} \frac{2}{3}+\frac{1}{4} \frac{1}{3}+\frac{1}{3}+\frac{1}{3}=\frac{1}{2}}\\
p(b)&=p(a) p(a \rightarrow b)+p(b) p(b \rightarrow b)+p(c) p(c \rightarrow b)\\
&\;={\scriptstyle\frac{1}{2} \frac{1}{6}+\frac{1}{4} \frac{1}{2}+\frac{1}{3} \frac{1}{3}=\frac{1}{4}}\\
p(c)&=p(a) p(a \rightarrow c)+p(b) p(b \rightarrow c)+p(c) p(c \rightarrow c)+p(d) p(d \rightarrow c)\\
&\;={\scriptstyle\frac{1}{2} \frac{1}{12}+\frac{1}{4} \frac{1}{6}+\frac{1}{8} 0+\frac{1}{8}=\frac{1}{8}}\\
p(d)&=p(a) p(a \rightarrow d)+p(c) p(c \rightarrow d)+p(d) p(d \rightarrow d)\\
&\;={\scriptstyle\frac{1}{2} \frac{1}{12}+\frac{1}{8} \frac{1}{3}+\frac{1}{8} \frac{1}{3}=\frac{1}{3}}
\end{align*}
\end{document}
为什么要用\scriptstyle
?分数读起来太难了!改用\tfrac
吧!
您应该删除\;
行&\;={\scriptstyle...
以对齐=
s。我更喜欢这种方式。
我强烈推荐这个
\documentclass{article}
\usepackage{amsmath}
\begin{document}
\begin{align*}
p(a)&=p(a) p(a \rightarrow a)+p(b) p(b \rightarrow a)+p(c) p(c \rightarrow a)+p(d) p(d \rightarrow a)\\
&=\tfrac{1}{2} \tfrac{2}{3}+\tfrac{1}{4} \tfrac{1}{3}+\tfrac{1}{3}+\tfrac{1}{3}=\tfrac{1}{2}\\
p(b)&=p(a) p(a \rightarrow b)+p(b) p(b \rightarrow b)+p(c) p(c \rightarrow b)\\
&=\tfrac{1}{2} \tfrac{1}{6}+\tfrac{1}{4} \tfrac{1}{2}+\tfrac{1}{3} \tfrac{1}{3}=\tfrac{1}{4}\\
p(c)&=p(a) p(a \rightarrow c)+p(b) p(b \rightarrow c)+p(c) p(c \rightarrow c)+p(d) p(d \rightarrow c)\\
&=\tfrac{1}{2} \tfrac{1}{12}+\tfrac{1}{4} \tfrac{1}{6}+\tfrac{1}{8} 0+\tfrac{1}{8}=\tfrac{1}{8}\\
p(d)&=p(a) p(a \rightarrow d)+p(c) p(c \rightarrow d)+p(d) p(d \rightarrow d)\\
&=\tfrac{1}{2} \tfrac{1}{12}+\tfrac{1}{8} \tfrac{1}{3}+\tfrac{1}{8} \tfrac{1}{3}=\tfrac{1}{3}
\end{align*}
\end{document}
答案2
我建议这种布局,使用环境fleqn
,并且在我看来,中等大小的分数看起来最好,我还使用\medmath
和\mfrac
命令,每个来自nccmath
:
\documentclass{article}
\usepackage{amsmath, nccmath}
\begin{document}
\begin{fleqn}
\begin{align*}
p(a)&=p(a) p(a \rightarrow a)+p(b) p(b \rightarrow a)+p(c) p(c \rightarrow a)+p(d) p(d \rightarrow a)\\
&\quad= \medmath{\frac{1}{2}\cdot \frac{2}{3}+\frac{1}{4}\cdot \frac{1}{3}+\frac{1}{3}+\frac{1}{3}}=\mfrac{1}{2} \\[1ex]
p(b)&=p(a) p(a \rightarrow b)+p(b) p(b \rightarrow b)+p(c) p(c \rightarrow b)\\
&\quad= \medmath{\frac{1}{2}\cdot \frac{1}{6}+\frac{1}{4}\cdot \frac{1}{2}+\frac{1}{3}\cdot \frac{1}{3}}=\mfrac{1}{4} \\[1ex]
p(c)&=p(a) p(a \rightarrow c)+p(b) p(b \rightarrow c)+p(c) p(c \rightarrow c)+p(d) p(d \rightarrow c)\\
&\quad= \medmath{\frac{1}{2}\cdot \frac{1}{12}+\frac{1}{4}\cdot \frac{1}{6}+\frac{1}{8}\,0 + \frac{1}{8}}=\mfrac{1}{8} \\[1ex]
p(d)&=p(a) p(a \rightarrow d)+p(c) p(c \rightarrow d)+p(d) p(d \rightarrow d)\\
&\quad= \medmath{\frac{1}{2}\cdot \frac{1}{12}+\frac{1}{8}\cdot \frac{1}{3}+\frac{1}{8\cdot } \frac{1}{3}}=\mfrac{1}{3}
\end{align*}
\end{fleqn}
\end{document}