为什么我的文本每个部分的对齐方式不一样?

为什么我的文本每个部分的对齐方式不一样?

产品

\documentclass[10pt,fleqn]{article}
\usepackage[top=1in, bottom=1in]{geometry}
\usepackage{amsfonts}
\usepackage{graphicx}
\usepackage{amsmath}
\usepackage[T1]{fontenc}
\usepackage{titling}

\begin{document}

    \maketitle

    \textbf{1.} Use the properties of logarithms to expand expressions:

    \[(a)\log_2\left(x^4\sqrt{\frac{x}{z^3}}\right)\]

    \[(b)\ln\left(\frac{7x^3\sqrt{x+1}}{5}\right)\]
    \bigskip

    \textbf{2.} Solve the logarithmic equation algebraically:

    \[\log_8(x-1)=\log_8(x-2)-\log_8(x+2)\]

        \bigskip

        \textbf{3.} Condense the expression to the logarithm of single quantity:

        \[5\ln(x-2)-\ln(x+2)-3\ln(x)\]
        \bigskip


        \textbf{4.} The management at a plastics factory has found that the maximum number of units a worker can produce in a day is 30. The learning curve for the number N of units produced per day after a new employee has worked t days is modeled by

         \begin{center}$N=30(1-e^{kt})$. \end{center}

        After 20 days on job, a new employee produces 19 units. How many days will pass before this employee is producing 25 units per day?

\end{document} 

答案1

您在这里看到的是段落缩进。我建议enumerate在这里使用环境。

\documentclass[10pt,fleqn]{article}
\usepackage[top=1in, bottom=1in]{geometry}
\usepackage{amsfonts}
\usepackage{amsmath}
\usepackage[T1]{fontenc}

\begin{document}
\begin{enumerate}\renewcommand{\labelenumi}{\textbf{\arabic{enumi}.}}
    %\maketitle

    \item Use the properties of logarithms to expand expressions:
    \begin{enumerate}
      \item $\displaystyle\log_2\left(x^4\sqrt{\frac{x}{z^3}}\right)$
      \item $\displaystyle\ln\left(\frac{7x^3\sqrt{x+1}}{5}\right)$
    \end{enumerate}


    \item Solve the logarithmic equation algebraically:
    \[\log_8(x-1)=\log_8(x-2)-\log_8(x+2)\]

    \item Condense the expression to the logarithm of single quantity:
        \[5\ln(x-2)-\ln(x+2)-3\ln(x)\]


    \item The management at a plastics factory has found that the maximum number of units a worker can produce in a day is 30. The learning curve for the number N of units produced per day after a new employee has worked t days is modeled by
         \[N=30(1-e^{kt})\;.\]
     After 20 days on job, a new employee produces 19 units. How many days will pass before this employee is producing 25 units per day?
\end{enumerate}
\end{document} 

在此处输入图片描述

相关内容