使方程适合于一张投影仪幻灯片

使方程适合于一张投影仪幻灯片

我正在做演示,其中一张幻灯片中有一个特别长的公式,我想让它适合整个页面。有什么最好的方法可以让它适合整个页面,而不会改变其他文本幻灯片的大小?提前谢谢。

\documentclass{beamer}
\usetheme{metropolis}
\begin{document}
\begin{frame}
\frametitle{Equation}
\begin{align}\label{global_energy_slab_sl_1}
    &|\mathcal{\hat R}|^2+|\mathcal{\hat T}|^2 = \frac{1+|\hat V|^2}{|\hat H|^2} \\ \nonumber
    &= \frac{1+(r_{0}^{+}r_{1}^{-}e^{i\lambda_{1}^{-}L}+r_{0}^{-}r_{1}^{+}e^{i\lambda_{1}^{+}L})(r_{0}^{+}r_{1}^{-}e^{-i\lambda_{1}^{-}L}+r_{0}^{-}r_{1}^{+}e^{-i\lambda_{1}^{+}L})}{(r_{0}^{-}r_{1}^{-}e^{i\lambda_{1}^{-}L}+r_{0}^{+}r_{1}^{+}e^{i\lambda_{1}^{+}L})(r_{0}^{-}r_{1}^{-}e^{-i\lambda_{1}^{-}L}+r_{0}^{+}r_{1}^{+}e^{-i\lambda_{1}^{+}L})} \\ \nonumber
    &=\frac{1+(r_{0}^{+})^2(r_{1}^{-})^2+(r_{0}^{-})^2(r_{1}^{+})^2+(r_{0}^{-}r_{0}^{+})(r_{1}^{-}r_{1}^{+})e^{2i\zeta_1 L}+(r_{0}^{-}r_{0}^{+})(r_{1}^{-}r_{1}^{+})e^{-2i\zeta_{1} L}}{(r_{0}^{-})^2(r_{1}^{-})^2+(r_{0}^{+})^2(r_{1}^{+})^2+(r_{0}^{-}r_{0}^{+})(r_{1}^{-}r_{1}^{+})e^{2i\zeta_1 L}+(r_{0}^{-}r_{0}^{+})(r_{1}^{-}r_{1}^{+})e^{-2i\zeta_{1} L}},
\end{align}
\end{frame}
\end{document}

在此处输入图片描述

答案1

对于最长的分数,我只会使用中等大小的分数nccmath(它们约占\displaystyle大小的 80%):

\documentclass{beamer}
\usetheme{metropolis}
\usepackage{nccmath}
\begin{document}

\begin{frame}
\frametitle{Equation}
\begin{align}\label{global_energy_slab_sl_1}
    &|\mathcal{\hat R}|^2+|\mathcal{\hat T}|^2 = \frac{1+|\hat V|^2}{|\hat H|^2} \\ \nonumber
    &= \mfrac{1+(r_{0}^{+}r_{1}^{-}e^{i\lambda_{1}^{-}L}+r_{0}^{-}r_{1}^{+}e^{i\lambda_{1}^{+}L})(r_{0}^{+}r_{1}^{-}e^{-i\lambda_{1}^{-}L}+r_{0}^{-}r_{1}^{+}e^{-i\lambda_{1}^{+}L})}{(r_{0}^{-}r_{1}^{-}e^{i\lambda_{1}^{-}L}+r_{0}^{+}r_{1}^{+}e^{i\lambda_{1}^{+}L})(r_{0}^{-}r_{1}^{-}e^{-i\lambda_{1}^{-}L}+r_{0}^{+}r_{1}^{+}e^{-i\lambda_{1}^{+}L})} \\[1ex] \nonumber
   & =\mfrac{1+(r_{0}^{+})^2(r_{1}^{-})^2+(r_{0}^{-})^2(r_{1}^{+})^2+(r_{0}^{-}r_{0}^{+})(r_{1}^{-}r_{1}^{+})e^{2i\zeta_1 L}+(r_{0}^{-}r_{0}^{+})(r_{1}^{-}r_{1}^{+})e^{-2i\zeta_{1} L}}{(r_{0}^{-})^2(r_{1}^{-})^2+(r_{0}^{+})^2(r_{1}^{+})^2+(r_{0}^{-}r_{0}^{+})(r_{1}^{-}r_{1}^{+})e^{2i\zeta_1 L}+(r_{0}^{-}r_{0}^{+})(r_{1}^{-}r_{1}^{+})e^{-2i\zeta_{1} L}}
\end{align}
\end{frame}

\end{document} 

在此处输入图片描述

答案2

如果您想保持幻灯片内容的原样,您可以将环境放在一个组中,并\tiny在该组中插入一些字体大小指令(例如)。因为它位于组内,所以大小更改将仅限于分组元素。

\documentclass{beamer}
\usetheme{metropolis}
\begin{document}
\begin{frame}
\frametitle{Equation}
{\tiny % or \scriptsize, \footnotesize, \small, etc.
\begin{align}\label{global_energy_slab_sl_1}
    &|\mathcal{\hat R}|^2+|\mathcal{\hat T}|^2 = \frac{1+|\hat V|^2}{|\hat H|^2} \\ \nonumber
    &= \frac{1+(r_{0}^{+}r_{1}^{-}e^{i\lambda_{1}^{-}L}+r_{0}^{-}r_{1}^{+}e^{i\lambda_{1}^{+}L})(r_{0}^{+}r_{1}^{-}e^{-i\lambda_{1}^{-}L}+r_{0}^{-}r_{1}^{+}e^{-i\lambda_{1}^{+}L})}{(r_{0}^{-}r_{1}^{-}e^{i\lambda_{1}^{-}L}+r_{0}^{+}r_{1}^{+}e^{i\lambda_{1}^{+}L})(r_{0}^{-}r_{1}^{-}e^{-i\lambda_{1}^{-}L}+r_{0}^{+}r_{1}^{+}e^{-i\lambda_{1}^{+}L})} \\ \nonumber
    &=\frac{1+(r_{0}^{+})^2(r_{1}^{-})^2+(r_{0}^{-})^2(r_{1}^{+})^2+(r_{0}^{-}r_{0}^{+})(r_{1}^{-}r_{1}^{+})e^{2i\zeta_1 L}+(r_{0}^{-}r_{0}^{+})(r_{1}^{-}r_{1}^{+})e^{-2i\zeta_{1} L}}{(r_{0}^{-})^2(r_{1}^{-})^2+(r_{0}^{+})^2(r_{1}^{+})^2+(r_{0}^{-}r_{0}^{+})(r_{1}^{-}r_{1}^{+})e^{2i\zeta_1 L}+(r_{0}^{-}r_{0}^{+})(r_{1}^{-}r_{1}^{+})e^{-2i\zeta_{1} L}},
\end{align}}
\end{frame}
\end{document}

如果您愿意更加灵活,您也许可以从您的等式中省略令人反感的表达,并且在您的演示中,您可以评论一些内容,“在对 109 中的项进行一些繁琐的分配之后,我们可以使用 110 中的这个恒等式来获得 111 中的这个结果。”

相关内容