IEEE 课程不会打印超过一页或一列的长方程式

IEEE 课程不会打印超过一页或一列的长方程式
\begin{equation}\label{eq6}
\begin{array}{l}
MI\left( {{E_i},{E^t},E_k^n,E_l^m} \right) =
\\p\left( {{E_i} = 0,E_j^t = 0,E_k^n = 0,E_l^m = 0} \right)\\
\\
 \times {\log _2}\left( {\frac{{p\left( {{E_i} = 0,E_j^t = 0,E_k^n = 0,E_l^m = 0} \right)}}{{p\left( {{E_i} = 0} \right)p\left( {E_j^t = 0} \right)p\left( {E_k^n = 0} \right)p\left( {E_l^m = 0} \right)}}} \right)\\
 \\
 + p\left( {{E_i} = 0,E_j^t = 0,E_k^n = 0,E_l^m = 1} \right)\\
 \\
 \times {\log _2}\left( {\frac{{p\left( {{E_i} = 0,E_j^t = 0,E_k^n = 0,E_l^m = 1} \right)}}{{p\left( {{E_i} = 0} \right)p\left( {E_j^t = 0} \right)p\left( {E_k^n = 0} \right)p\left( {E_l^m = 1} \right)}}} \right)\\
 \\
 + p\left( {{E_i} = 0,E_j^t = 0,E_k^n = 1,E_l^m = 0} \right)\\
 \\
 \times {\log _2}\left( {\frac{{p\left( {{E_i} = 0,E_j^t = 0,E_k^n = 1,E_l^m = 0} \right)}}{{p\left( {{E_i} = 0} \right)p\left( {E_j^t = 0} \right)p\left( {E_k^n = 1} \right)p\left( {E_l^m = 0} \right)}}} \right)\\
 \\
 + p\left( {{E_i} = 0,E_j^t = 0,E_k^n = 1,E_l^m = 1} \right)\\
 \\
 \times {\log _2}\left( {\frac{{p\left( {{E_i} = 0,E_j^t = 0,E_k^n = 1,E_l^m = 1} \right)}}{{p\left( {{E_i} = 0} \right)p\left( {E_j^t = 0} \right)p\left( {E_k^n = 1} \right)p\left( {E_l^m = 1} \right)}}} \right)\\
 \\
 + p\left( {{E_i} = 0,E_j^t = 1,E_k^n = 0,E_l^m = 0} \right)\\
 \\
 \times {\log _2}\left( {\frac{{p\left( {{E_i} = 0,E_j^t = 1,E_k^n = 0,E_l^m = 0} \right)}}{{p\left( {{E_i} = 0} \right)p\left( {E_j^t = 1} \right)p\left( {E_k^n = 0} \right)p\left( {E_l^m = 0} \right)}}} \right)\\
 \\
 + p\left( {{E_i} = 0,E_j^t = 1,E_k^n = 0,E_l^m = 1} \right)\\
 \\
 \times {\log _2}\left( {\frac{{p\left( {{E_i} = 0,E_j^t = 1,E_k^n = 0,E_l^m = 1} \right)}}{{p\left( {{E_i} = 0} \right)p\left( {E_j^t = 1} \right)p\left( {E_k^n = 0} \right)p\left( {E_l^m = 1} \right)}}} \right)\\
 \\
 + p\left( {{E_i} = 0,E_j^t = 1,E_k^n = 1,E_l^m = 0} \right)\\
 \\
 \times {\log _2}\left( {\frac{{p\left( {{E_i} = 0,E_j^t = 1,E_k^n = 1,E_l^m = 0} \right)}}{{p\left( {{E_i} = 0} \right)p\left( {E_j^t = 1} \right)p\left( {E_k^n = 1} \right)p\left( {E_l^m = 0} \right)}}} \right)\\
 \\
 + p\left( {{E_i} = 0,E_j^t = 1,E_k^n = 1,E_l^m = 1} \right)\\
 \\
 \times {\log _2}\left( {\frac{{p\left( {{E_i} = 0,E_j^t = 1,E_k^n = 1,E_l^m = 1} \right)}}{{p\left( {{E_i} = 0} \right)p\left( {E_j^t = 1} \right)p\left( {E_k^n = 1} \right)p\left( {E_l^m = 1} \right)}}} \right)\\
 \\
 + p\left( {{E_i} = 1,E_j^t = 0,E_k^n = 0,E_l^m = 0} \right)\\
 \\
 \times {\log _2}\left( {\frac{{p\left( {{E_i} = 1,E_j^t = 0,E_k^n = 0,E_l^m = 0} \right)}}{{p\left( {{E_i} = 1} \right)p\left( {E_j^t = 0} \right)p\left( {E_k^n = 0} \right)p\left( {E_l^m = 0} \right)}}} \right)\\
 \\
 + p\left( {{E_i} = 1,E_j^t = 0,E_k^n = 0,E_l^m = 1} \right)\\
 \\
 \times {\log _2}\left( {\frac{{p\left( {{E_i} = 1,E_j^t = 0,E_k^n = 0,E_l^m = 1} \right)}}{{p\left( {{E_i} = 1} \right)p\left( {E_j^t = 0} \right)p\left( {E_k^n = 0} \right)p\left( {E_l^m = 1} \right)}}} \right)\\
 \\
 \\
 + p\left( {{E_i} = 1,E_j^t = 0,E_k^n = 1,E_l^m = 1} \right)\\
 \\
 \times {\log _2}\left( {\frac{{p\left( {{E_i} = 1,E_j^t = 0,E_k^n = 1,E_l^m = 1} \right)}}{{p\left( {{E_i} = 1} \right)p\left( {E_j^t = 0} \right)p\left( {E_k^n = 1} \right)p\left( {E_l^m = 1} \right)}}} \right)\\
 %\\
 + p\left( {{E_i} = 1,E_j^t = 1,E_k^n = 0,E_l^m = 0} \right)\\
 \\
 \times {\log _2}\left( {\frac{{p\left( {{E_i} = 1,E_j^t = 1,E_k^n = 0,E_l^m = 0} \right)}}{{p\left( {{E_i} = 1} \right)p\left( {E_j^t = 1} \right)p\left( {E_k^n = 0} \right)p\left( {E_l^m = 0} \right)}}} \right)\\
 \\
 + p\left( {{E_i} = 1,E_j^t = 1,E_k^n = 0,E_l^m = 1} \right)\\
 \\
 \times {\log _2}\left( {\frac{{p\left( {{E_i} = 1,E_j^t = 1,E_k^n = 0,E_l^m = 1} \right)}}{{p\left( {{E_i} = 1} \right)p\left( {E_j^t = 1} \right)p\left( {E_k^n = 0} \right)p\left( {E_l^m = 1} \right)}}} \right)\\
 \\
 + p\left( {{E_i} = 1,E_j^t = 1,E_k^n = 1,E_l^m = 0} \right)\\
 \\
 \times {\log _2}\left( {\frac{{p\left( {{E_i} = 1,E_j^t = 1,E_k^n = 1,E_l^m = 0} \right)}}{{p\left( {{E_i} = 1} \right)p\left( {E_j^t = 1} \right)p\left( {E_k^n = 1} \right)p\left( {E_l^m = 0} \right)}}} \right)\\
 \\
 + p\left( {{E_i} = 1,E_j^t = 1,E_k^n = 1,E_l^m = 1} \right)\\
 \\
 \times {\log _2}\left( {\frac{{p\left( {{E_i} = 1,E_j^t = 1,E_k^n = 1,E_l^m = 1} \right)}}{{p\left( {{E_i} = 1} \right)p\left( {E_j^t = 1} \right)p\left( {E_k^n = 1} \right)p\left( {E_l^m = 1} \right)}}} \right)
\end{array}
\end{equation} 

答案1

  • array并且环境内部的任何多行数学环境equation都不能分成多页或多列。
  • 更新使用顺序\\ \\
  • 谁会读这么长的等式?

你可以按如下方式写出你的方程式:

\documentclass[twocolumn]{article}
\usepackage{mathtools}
\allowdisplaybreaks

\begin{document}
\begin{align*}
    \MoveEqLeft
MI\left( {{E_i},{E^t},E_k^n,E_l^m} \right) = \\
& p\left( {{E_i} = 0,E_j^t = 0,E_k^n = 0,E_l^m = 0} \right)\\
& \times {\log _2}\left( {\frac{{p\left( {{E_i} = 0,E_j^t = 0,E_k^n = 0,E_l^m = 0} \right)}}{{p\left( {{E_i} = 0} \right)p\left( {E_j^t = 0} \right)p\left( {E_k^n = 0} \right)p\left( {E_l^m = 0} \right)}}} \right)\\
& + p\left( {{E_i} = 0,E_j^t = 0,E_k^n = 0,E_l^m = 1} \right)\\
& \times {\log _2}\left( {\frac{{p\left( {{E_i} = 0,E_j^t = 0,E_k^n = 0,E_l^m = 1} \right)}}{{p\left( {{E_i} = 0} \right)p\left( {E_j^t = 0} \right)p\left( {E_k^n = 0} \right)p\left( {E_l^m = 1} \right)}}} \right)\\
& + p\left( {{E_i} = 0,E_j^t = 0,E_k^n = 1,E_l^m = 0} \right)\\
& \times {\log _2}\left( {\frac{{p\left( {{E_i} = 0,E_j^t = 0,E_k^n = 1,E_l^m = 0} \right)}}{{p\left( {{E_i} = 0} \right)p\left( {E_j^t = 0} \right)p\left( {E_k^n = 1} \right)p\left( {E_l^m = 0} \right)}}} \right)\\
& + p\left( {{E_i} = 0,E_j^t = 0,E_k^n = 1,E_l^m = 1} \right)\\
& \times {\log _2}\left( {\frac{{p\left( {{E_i} = 0,E_j^t = 0,E_k^n = 1,E_l^m = 1} \right)}}{{p\left( {{E_i} = 0} \right)p\left( {E_j^t = 0} \right)p\left( {E_k^n = 1} \right)p\left( {E_l^m = 1} \right)}}} \right)\\
& + p\left( {{E_i} = 0,E_j^t = 1,E_k^n = 0,E_l^m = 0} \right)\\
& \times {\log _2}\left( {\frac{{p\left( {{E_i} = 0,E_j^t = 1,E_k^n = 0,E_l^m = 0} \right)}}{{p\left( {{E_i} = 0} \right)p\left( {E_j^t = 1} \right)p\left( {E_k^n = 0} \right)p\left( {E_l^m = 0} \right)}}} \right)\\
& + p\left( {{E_i} = 0,E_j^t = 1,E_k^n = 0,E_l^m = 1} \right)\\
& \times {\log _2}\left( {\frac{{p\left( {{E_i} = 0,E_j^t = 1,E_k^n = 0,E_l^m = 1} \right)}}{{p\left( {{E_i} = 0} \right)p\left( {E_j^t = 1} \right)p\left( {E_k^n = 0} \right)p\left( {E_l^m = 1} \right)}}} \right)\\
& + p\left( {{E_i} = 0,E_j^t = 1,E_k^n = 1,E_l^m = 0} \right)\\
& \times {\log _2}\left( {\frac{{p\left( {{E_i} = 0,E_j^t = 1,E_k^n = 1,E_l^m = 0} \right)}}{{p\left( {{E_i} = 0} \right)p\left( {E_j^t = 1} \right)p\left( {E_k^n = 1} \right)p\left( {E_l^m = 0} \right)}}} \right)\\
& + p\left( {{E_i} = 0,E_j^t = 1,E_k^n = 1,E_l^m = 1} \right)\\
& \times {\log _2}\left( {\frac{{p\left( {{E_i} = 0,E_j^t = 1,E_k^n = 1,E_l^m = 1} \right)}}{{p\left( {{E_i} = 0} \right)p\left( {E_j^t = 1} \right)p\left( {E_k^n = 1} \right)p\left( {E_l^m = 1} \right)}}} \right)\\
& + p\left( {{E_i} = 1,E_j^t = 0,E_k^n = 0,E_l^m = 0} \right)\\
& \times {\log _2}\left( {\frac{{p\left( {{E_i} = 1,E_j^t = 0,E_k^n = 0,E_l^m = 0} \right)}}{{p\left( {{E_i} = 1} \right)p\left( {E_j^t = 0} \right)p\left( {E_k^n = 0} \right)p\left( {E_l^m = 0} \right)}}} \right)\\
& + p\left( {{E_i} = 1,E_j^t = 0,E_k^n = 0,E_l^m = 1} \right)\\
& \times {\log _2}\left( {\frac{{p\left( {{E_i} = 1,E_j^t = 0,E_k^n = 0,E_l^m = 1} \right)}}{{p\left( {{E_i} = 1} \right)p\left( {E_j^t = 0} \right)p\left( {E_k^n = 0} \right)p\left( {E_l^m = 1} \right)}}} \right)\\
& + p\left( {{E_i} = 1,E_j^t = 0,E_k^n = 1,E_l^m = 1} \right)\\
& \times {\log _2}\left( {\frac{{p\left( {{E_i} = 1,E_j^t = 0,E_k^n = 1,E_l^m = 1} \right)}}{{p\left( {{E_i} = 1} \right)p\left( {E_j^t = 0} \right)p\left( {E_k^n = 1} \right)p\left( {E_l^m = 1} \right)}}} \right)\\
& + p\left( {{E_i} = 1,E_j^t = 1,E_k^n = 0,E_l^m = 0} \right)\\
& \times {\log _2}\left( {\frac{{p\left( {{E_i} = 1,E_j^t = 1,E_k^n = 0,E_l^m = 0} \right)}}{{p\left( {{E_i} = 1} \right)p\left( {E_j^t = 1} \right)p\left( {E_k^n = 0} \right)p\left( {E_l^m = 0} \right)}}} \right)\\
& + p\left( {{E_i} = 1,E_j^t = 1,E_k^n = 0,E_l^m = 1} \right)\\
& \times {\log _2}\left( {\frac{{p\left( {{E_i} = 1,E_j^t = 1,E_k^n = 0,E_l^m = 1} \right)}}{{p\left( {{E_i} = 1} \right)p\left( {E_j^t = 1} \right)p\left( {E_k^n = 0} \right)p\left( {E_l^m = 1} \right)}}} \right)\\
& + p\left( {{E_i} = 1,E_j^t = 1,E_k^n = 1,E_l^m = 0} \right)\\
& \times {\log _2}\left( {\frac{{p\left( {{E_i} = 1,E_j^t = 1,E_k^n = 1,E_l^m = 0} \right)}}{{p\left( {{E_i} = 1} \right)p\left( {E_j^t = 1} \right)p\left( {E_k^n = 1} \right)p\left( {E_l^m = 0} \right)}}} \right)\\
& + p\left( {{E_i} = 1,E_j^t = 1,E_k^n = 1,E_l^m = 1} \right)\\
& \times {\log _2}\left( {\frac{{p\left( {{E_i} = 1,E_j^t = 1,E_k^n = 1,E_l^m = 1} \right)}}{{p\left( {{E_i} = 1} \right)p\left( {E_j^t = 1} \right)p\left( {E_k^n = 1} \right)p\left( {E_l^m = 1} \right)}}} \right)
\end{align*} 
\end{document}

在此处输入图片描述

相关内容