\begin{equation}\label{eq6}
\begin{array}{l}
MI\left( {{E_i},{E^t},E_k^n,E_l^m} \right) =
\\p\left( {{E_i} = 0,E_j^t = 0,E_k^n = 0,E_l^m = 0} \right)\\
\\
\times {\log _2}\left( {\frac{{p\left( {{E_i} = 0,E_j^t = 0,E_k^n = 0,E_l^m = 0} \right)}}{{p\left( {{E_i} = 0} \right)p\left( {E_j^t = 0} \right)p\left( {E_k^n = 0} \right)p\left( {E_l^m = 0} \right)}}} \right)\\
\\
+ p\left( {{E_i} = 0,E_j^t = 0,E_k^n = 0,E_l^m = 1} \right)\\
\\
\times {\log _2}\left( {\frac{{p\left( {{E_i} = 0,E_j^t = 0,E_k^n = 0,E_l^m = 1} \right)}}{{p\left( {{E_i} = 0} \right)p\left( {E_j^t = 0} \right)p\left( {E_k^n = 0} \right)p\left( {E_l^m = 1} \right)}}} \right)\\
\\
+ p\left( {{E_i} = 0,E_j^t = 0,E_k^n = 1,E_l^m = 0} \right)\\
\\
\times {\log _2}\left( {\frac{{p\left( {{E_i} = 0,E_j^t = 0,E_k^n = 1,E_l^m = 0} \right)}}{{p\left( {{E_i} = 0} \right)p\left( {E_j^t = 0} \right)p\left( {E_k^n = 1} \right)p\left( {E_l^m = 0} \right)}}} \right)\\
\\
+ p\left( {{E_i} = 0,E_j^t = 0,E_k^n = 1,E_l^m = 1} \right)\\
\\
\times {\log _2}\left( {\frac{{p\left( {{E_i} = 0,E_j^t = 0,E_k^n = 1,E_l^m = 1} \right)}}{{p\left( {{E_i} = 0} \right)p\left( {E_j^t = 0} \right)p\left( {E_k^n = 1} \right)p\left( {E_l^m = 1} \right)}}} \right)\\
\\
+ p\left( {{E_i} = 0,E_j^t = 1,E_k^n = 0,E_l^m = 0} \right)\\
\\
\times {\log _2}\left( {\frac{{p\left( {{E_i} = 0,E_j^t = 1,E_k^n = 0,E_l^m = 0} \right)}}{{p\left( {{E_i} = 0} \right)p\left( {E_j^t = 1} \right)p\left( {E_k^n = 0} \right)p\left( {E_l^m = 0} \right)}}} \right)\\
\\
+ p\left( {{E_i} = 0,E_j^t = 1,E_k^n = 0,E_l^m = 1} \right)\\
\\
\times {\log _2}\left( {\frac{{p\left( {{E_i} = 0,E_j^t = 1,E_k^n = 0,E_l^m = 1} \right)}}{{p\left( {{E_i} = 0} \right)p\left( {E_j^t = 1} \right)p\left( {E_k^n = 0} \right)p\left( {E_l^m = 1} \right)}}} \right)\\
\\
+ p\left( {{E_i} = 0,E_j^t = 1,E_k^n = 1,E_l^m = 0} \right)\\
\\
\times {\log _2}\left( {\frac{{p\left( {{E_i} = 0,E_j^t = 1,E_k^n = 1,E_l^m = 0} \right)}}{{p\left( {{E_i} = 0} \right)p\left( {E_j^t = 1} \right)p\left( {E_k^n = 1} \right)p\left( {E_l^m = 0} \right)}}} \right)\\
\\
+ p\left( {{E_i} = 0,E_j^t = 1,E_k^n = 1,E_l^m = 1} \right)\\
\\
\times {\log _2}\left( {\frac{{p\left( {{E_i} = 0,E_j^t = 1,E_k^n = 1,E_l^m = 1} \right)}}{{p\left( {{E_i} = 0} \right)p\left( {E_j^t = 1} \right)p\left( {E_k^n = 1} \right)p\left( {E_l^m = 1} \right)}}} \right)\\
\\
+ p\left( {{E_i} = 1,E_j^t = 0,E_k^n = 0,E_l^m = 0} \right)\\
\\
\times {\log _2}\left( {\frac{{p\left( {{E_i} = 1,E_j^t = 0,E_k^n = 0,E_l^m = 0} \right)}}{{p\left( {{E_i} = 1} \right)p\left( {E_j^t = 0} \right)p\left( {E_k^n = 0} \right)p\left( {E_l^m = 0} \right)}}} \right)\\
\\
+ p\left( {{E_i} = 1,E_j^t = 0,E_k^n = 0,E_l^m = 1} \right)\\
\\
\times {\log _2}\left( {\frac{{p\left( {{E_i} = 1,E_j^t = 0,E_k^n = 0,E_l^m = 1} \right)}}{{p\left( {{E_i} = 1} \right)p\left( {E_j^t = 0} \right)p\left( {E_k^n = 0} \right)p\left( {E_l^m = 1} \right)}}} \right)\\
\\
\\
+ p\left( {{E_i} = 1,E_j^t = 0,E_k^n = 1,E_l^m = 1} \right)\\
\\
\times {\log _2}\left( {\frac{{p\left( {{E_i} = 1,E_j^t = 0,E_k^n = 1,E_l^m = 1} \right)}}{{p\left( {{E_i} = 1} \right)p\left( {E_j^t = 0} \right)p\left( {E_k^n = 1} \right)p\left( {E_l^m = 1} \right)}}} \right)\\
%\\
+ p\left( {{E_i} = 1,E_j^t = 1,E_k^n = 0,E_l^m = 0} \right)\\
\\
\times {\log _2}\left( {\frac{{p\left( {{E_i} = 1,E_j^t = 1,E_k^n = 0,E_l^m = 0} \right)}}{{p\left( {{E_i} = 1} \right)p\left( {E_j^t = 1} \right)p\left( {E_k^n = 0} \right)p\left( {E_l^m = 0} \right)}}} \right)\\
\\
+ p\left( {{E_i} = 1,E_j^t = 1,E_k^n = 0,E_l^m = 1} \right)\\
\\
\times {\log _2}\left( {\frac{{p\left( {{E_i} = 1,E_j^t = 1,E_k^n = 0,E_l^m = 1} \right)}}{{p\left( {{E_i} = 1} \right)p\left( {E_j^t = 1} \right)p\left( {E_k^n = 0} \right)p\left( {E_l^m = 1} \right)}}} \right)\\
\\
+ p\left( {{E_i} = 1,E_j^t = 1,E_k^n = 1,E_l^m = 0} \right)\\
\\
\times {\log _2}\left( {\frac{{p\left( {{E_i} = 1,E_j^t = 1,E_k^n = 1,E_l^m = 0} \right)}}{{p\left( {{E_i} = 1} \right)p\left( {E_j^t = 1} \right)p\left( {E_k^n = 1} \right)p\left( {E_l^m = 0} \right)}}} \right)\\
\\
+ p\left( {{E_i} = 1,E_j^t = 1,E_k^n = 1,E_l^m = 1} \right)\\
\\
\times {\log _2}\left( {\frac{{p\left( {{E_i} = 1,E_j^t = 1,E_k^n = 1,E_l^m = 1} \right)}}{{p\left( {{E_i} = 1} \right)p\left( {E_j^t = 1} \right)p\left( {E_k^n = 1} \right)p\left( {E_l^m = 1} \right)}}} \right)
\end{array}
\end{equation}
答案1
array
并且环境内部的任何多行数学环境equation
都不能分成多页或多列。- 更新使用顺序
\\ \\
- 谁会读这么长的等式?
你可以按如下方式写出你的方程式:
\documentclass[twocolumn]{article}
\usepackage{mathtools}
\allowdisplaybreaks
\begin{document}
\begin{align*}
\MoveEqLeft
MI\left( {{E_i},{E^t},E_k^n,E_l^m} \right) = \\
& p\left( {{E_i} = 0,E_j^t = 0,E_k^n = 0,E_l^m = 0} \right)\\
& \times {\log _2}\left( {\frac{{p\left( {{E_i} = 0,E_j^t = 0,E_k^n = 0,E_l^m = 0} \right)}}{{p\left( {{E_i} = 0} \right)p\left( {E_j^t = 0} \right)p\left( {E_k^n = 0} \right)p\left( {E_l^m = 0} \right)}}} \right)\\
& + p\left( {{E_i} = 0,E_j^t = 0,E_k^n = 0,E_l^m = 1} \right)\\
& \times {\log _2}\left( {\frac{{p\left( {{E_i} = 0,E_j^t = 0,E_k^n = 0,E_l^m = 1} \right)}}{{p\left( {{E_i} = 0} \right)p\left( {E_j^t = 0} \right)p\left( {E_k^n = 0} \right)p\left( {E_l^m = 1} \right)}}} \right)\\
& + p\left( {{E_i} = 0,E_j^t = 0,E_k^n = 1,E_l^m = 0} \right)\\
& \times {\log _2}\left( {\frac{{p\left( {{E_i} = 0,E_j^t = 0,E_k^n = 1,E_l^m = 0} \right)}}{{p\left( {{E_i} = 0} \right)p\left( {E_j^t = 0} \right)p\left( {E_k^n = 1} \right)p\left( {E_l^m = 0} \right)}}} \right)\\
& + p\left( {{E_i} = 0,E_j^t = 0,E_k^n = 1,E_l^m = 1} \right)\\
& \times {\log _2}\left( {\frac{{p\left( {{E_i} = 0,E_j^t = 0,E_k^n = 1,E_l^m = 1} \right)}}{{p\left( {{E_i} = 0} \right)p\left( {E_j^t = 0} \right)p\left( {E_k^n = 1} \right)p\left( {E_l^m = 1} \right)}}} \right)\\
& + p\left( {{E_i} = 0,E_j^t = 1,E_k^n = 0,E_l^m = 0} \right)\\
& \times {\log _2}\left( {\frac{{p\left( {{E_i} = 0,E_j^t = 1,E_k^n = 0,E_l^m = 0} \right)}}{{p\left( {{E_i} = 0} \right)p\left( {E_j^t = 1} \right)p\left( {E_k^n = 0} \right)p\left( {E_l^m = 0} \right)}}} \right)\\
& + p\left( {{E_i} = 0,E_j^t = 1,E_k^n = 0,E_l^m = 1} \right)\\
& \times {\log _2}\left( {\frac{{p\left( {{E_i} = 0,E_j^t = 1,E_k^n = 0,E_l^m = 1} \right)}}{{p\left( {{E_i} = 0} \right)p\left( {E_j^t = 1} \right)p\left( {E_k^n = 0} \right)p\left( {E_l^m = 1} \right)}}} \right)\\
& + p\left( {{E_i} = 0,E_j^t = 1,E_k^n = 1,E_l^m = 0} \right)\\
& \times {\log _2}\left( {\frac{{p\left( {{E_i} = 0,E_j^t = 1,E_k^n = 1,E_l^m = 0} \right)}}{{p\left( {{E_i} = 0} \right)p\left( {E_j^t = 1} \right)p\left( {E_k^n = 1} \right)p\left( {E_l^m = 0} \right)}}} \right)\\
& + p\left( {{E_i} = 0,E_j^t = 1,E_k^n = 1,E_l^m = 1} \right)\\
& \times {\log _2}\left( {\frac{{p\left( {{E_i} = 0,E_j^t = 1,E_k^n = 1,E_l^m = 1} \right)}}{{p\left( {{E_i} = 0} \right)p\left( {E_j^t = 1} \right)p\left( {E_k^n = 1} \right)p\left( {E_l^m = 1} \right)}}} \right)\\
& + p\left( {{E_i} = 1,E_j^t = 0,E_k^n = 0,E_l^m = 0} \right)\\
& \times {\log _2}\left( {\frac{{p\left( {{E_i} = 1,E_j^t = 0,E_k^n = 0,E_l^m = 0} \right)}}{{p\left( {{E_i} = 1} \right)p\left( {E_j^t = 0} \right)p\left( {E_k^n = 0} \right)p\left( {E_l^m = 0} \right)}}} \right)\\
& + p\left( {{E_i} = 1,E_j^t = 0,E_k^n = 0,E_l^m = 1} \right)\\
& \times {\log _2}\left( {\frac{{p\left( {{E_i} = 1,E_j^t = 0,E_k^n = 0,E_l^m = 1} \right)}}{{p\left( {{E_i} = 1} \right)p\left( {E_j^t = 0} \right)p\left( {E_k^n = 0} \right)p\left( {E_l^m = 1} \right)}}} \right)\\
& + p\left( {{E_i} = 1,E_j^t = 0,E_k^n = 1,E_l^m = 1} \right)\\
& \times {\log _2}\left( {\frac{{p\left( {{E_i} = 1,E_j^t = 0,E_k^n = 1,E_l^m = 1} \right)}}{{p\left( {{E_i} = 1} \right)p\left( {E_j^t = 0} \right)p\left( {E_k^n = 1} \right)p\left( {E_l^m = 1} \right)}}} \right)\\
& + p\left( {{E_i} = 1,E_j^t = 1,E_k^n = 0,E_l^m = 0} \right)\\
& \times {\log _2}\left( {\frac{{p\left( {{E_i} = 1,E_j^t = 1,E_k^n = 0,E_l^m = 0} \right)}}{{p\left( {{E_i} = 1} \right)p\left( {E_j^t = 1} \right)p\left( {E_k^n = 0} \right)p\left( {E_l^m = 0} \right)}}} \right)\\
& + p\left( {{E_i} = 1,E_j^t = 1,E_k^n = 0,E_l^m = 1} \right)\\
& \times {\log _2}\left( {\frac{{p\left( {{E_i} = 1,E_j^t = 1,E_k^n = 0,E_l^m = 1} \right)}}{{p\left( {{E_i} = 1} \right)p\left( {E_j^t = 1} \right)p\left( {E_k^n = 0} \right)p\left( {E_l^m = 1} \right)}}} \right)\\
& + p\left( {{E_i} = 1,E_j^t = 1,E_k^n = 1,E_l^m = 0} \right)\\
& \times {\log _2}\left( {\frac{{p\left( {{E_i} = 1,E_j^t = 1,E_k^n = 1,E_l^m = 0} \right)}}{{p\left( {{E_i} = 1} \right)p\left( {E_j^t = 1} \right)p\left( {E_k^n = 1} \right)p\left( {E_l^m = 0} \right)}}} \right)\\
& + p\left( {{E_i} = 1,E_j^t = 1,E_k^n = 1,E_l^m = 1} \right)\\
& \times {\log _2}\left( {\frac{{p\left( {{E_i} = 1,E_j^t = 1,E_k^n = 1,E_l^m = 1} \right)}}{{p\left( {{E_i} = 1} \right)p\left( {E_j^t = 1} \right)p\left( {E_k^n = 1} \right)p\left( {E_l^m = 1} \right)}}} \right)
\end{align*}
\end{document}