超额信息尚未澄清

超额信息尚未澄清

我发现文档左边距发生了变化,错误信息提示

Overfull \hbox (12.87598pt too wide) in paragraph at lines 56--57

以下是我的文档的摘录:

\documentclass[11pt]{book}
\usepackage[T1]{fontenc}
\usepackage[utf8]{inputenc}
\usepackage[french]{babel}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{amsfonts}
\usepackage{mathtools}
\usepackage{ntheorem}
\usepackage[most]{tcolorbox}
\usepackage{bbm}
\usepackage[nosolutionfiles]{answers} % for immediate answers (not stored in a file)
\theoremstyle{plain}
\theoremindent40pt 
\theoremheaderfont{\normalfont\bfseries\hspace{-\theoremindent}}
\newtheorem{proposition}{Proposition}
\newtheorem{corollary}{Corollaire}
\newtheorem{theorem}{Théorème}
\newtheorem{lemma}{Lemme}
\newtheorem{remark}{Remarque}
\newtheorem{definition}{Définition}
\newtheorem{example}{Exemple}
\newtheorem{proof}{Démonstration}
\usetikzlibrary{decorations.pathmorphing}
\tcbuselibrary{skins}
\tcolorboxenvironment{theorem}{
    blanker,
    breakable,
    before skip=\topsep,
    after skip=\topsep,
    borderline west={1pt}{20pt}{double, shorten <=12pt}
    }
\tcolorboxenvironment{proposition}{
    blanker,
    breakable,
    before skip=\topsep,
    after skip=\topsep,
    borderline west={1pt}{20pt}{double, shorten <=12pt}
    }
\tcolorboxenvironment{definition}{
    blanker,
    breakable,
    before skip=\topsep,
    after skip=\topsep,
    borderline west={1pt}{20pt}{decoration={zigzag,amplitude=2pt,pre=moveto,pre length=12pt},decorate}
    }
\newtheorem{Exc}{Exercice}
\Newassociation{correction}{Soln}{mycor}
\Newassociation{indication}{Indi}{myind}
%\newcommand{\precorrection}{~{\bf \footnotesize [Exercice corrig\'e]}}
%\newcommand{\preindication}{~{\bf \footnotesize [Indication]}}
\renewcommand{\Solnlabel}[1]{\bf \emph{Correction #1}}
\renewcommand{\Indilabel}[1]{\bf \emph{Indication #1}}
\def\exo#1{\futurelet\testchar\MaybeOptArgmyexoo}
\def\MaybeOptArgmyexoo{\ifx[\testchar \let\next\OptArgmyexoo
                        \else \let\next\NoOptArgmyexoo \fi \next}
\def\OptArgmyexoo[#1]{\begin{exo}[#1]\normalfont}
\def\NoOptArgmyexoo{\begin{exo}\normalfont}
\newcommand{\finexo}{\end{exo}}
\newcommand{\flag}[1]{}
\newtheorem{question}{Question}
\def\Tiny{\fontsize{4pt}{4pt}\selectfont}
\newcommand*{\eqdef}{\ensuremath{\overset{\mathclap{\text{\Tiny def}}}{=}}}
\begin{document}
\Opensolutionfile{mycor}[ficcorex]
 \Opensolutionfile{myind}[ficind]


\begin{exo}
La différence symétrique de deux ensembles $A$ et $B$ est définie par
\[
A\Delta B \eqdef  (A \cup B)\setminus (A \cup B):
\]

\begin{enumerate}
  \item Soient $A \in \mathbb{N}^{prime}$ et $B \in  \mathbb{N}.$ On définit
\[
d(A:B) \coloneq
\begin{cases}
\dfrac{1}{\min(A \Delta B)} & \text{si} \, A \neq B \\
0 & \text{si} \, A=B.
\end{cases}
\]
Démontrer que si $A, B, C$ sont trois ensembles distincts de $\mathbb N^{\star},$ alors
\[
d(A,B) \leqslant   \max\left(d(A,C), d(C,B)\right)
\]

  \item Conclure que $d$ définit une distance sur $\mathcal{P}(\mathbb N^{\ast}).$
  \item  Montrer que pour tout $n \in  N^{\ast}$ et tous $A,B \subset \mathbb{N}^{\ast},$
\[
d(A B) < \dfrac{1}{n} \Longleftrightarrow  A\cap [1,n]=B\cap [1,n].
\]
  \item  On considère la suite $(X_n)$ dans $\mathcal P(\mathbb N^{\ast}),$ où
  \[
X_n = \{1,2^n, 3^n, \cdots \}
\]
(Noter que $X_1 = \{1, 2, 3, \cdots \}, X_2 = \{1, 4, 8 \cdots \}$ est l'ensemble des carrés, $X_3 =
\{1, 9, 27, \cdots \}$ est l'ensemble des cubes). Montrer que la suite $(X_n)$ converge vers
un ensemble $X \in \mathcal  P(\mathbb N)$ que l'on déterminera. (Indication : utiliser le résultat de la
question précédente).
\end{enumerate}
\end{exo}
 \begin{indication}
\begin{enumerate}
\item  Indication : on pourra utiliser l'inclusion $A\Delta B \subset (A\Delta C) \cup (C\Delta B).$
\end{enumerate}
\end{indication}

 \begin{correction}
 Commençons par montrer l'inclusion $A \Delta B \subset (A\Delta C) \cup  (C\Delta B)$ (même si
l'énoncé permettait de l'utiliser sans la démontrer). Soit $x  \in  A\Delta B = (A \setminus B) \cup  (B \setminus A).$
Supposons que $x \in  A \setminus B$ (l'autre cas étant symétrique). Si $x \in  C,$  on a $x \in  C \setminus B,$  et donc
$x \in  C\Delta B.$  Si $x \neq  C,$  on a $x \in  A \setminus C,$  et donc $x \in  A\Delta C.$  Dans les deux cas on obtient bien
$x \in  (A\Delta C) \cup  (C\Delta B),$  ce qu'on voulait.
\begin{enumerate}
\item Montrons maintenant l'inégalité
\[
d(A,B) \leqslant  max{d(A,C), d(C,B)}
\]
De l'inclusion $A\Delta B \subset (A\Delta C) \cup (C\Delta B)$ on déduit l'inégalité
\[
\min(A\Delta B) \geqslant \min(\min(A\Delta C), \min(C\Delta B)).
\]
En passant à l'inverse on obtient $\dfrac{1}{\min(A4B)}  \leqslant \max \left( \dfrac{1}{\min(A \Delta C)} , \min(C\Delta B)\right).$
\item  L'équivalence $d(A,B) = 0 \Longleftrightarrow  A = B$ découle immédiatement de la définition, de même
que l'égalité $d(A,B) = d(B,A).$  Enfin, l'inégalité triangulaire est une conséquence
de l'inégalité ultramétrique (c'est-à-dire l'inégalité démontrée dans la question précédente).
Ainsi $d$ définit une distance sur $\mathcal{P}(\mathbb{N}^{\ast}).$
\item Si $A = B$ les deux côtés de l'équivalence sont clairement vraie. Supposons donc $A \neq  B.$
Par définition on a
\[
d(A,B) < \dfrac{1}{n} \Longleftrightarrow \min(A \Delta B) > n.
\]
Or $\min(A\Delta B) > n$ signifie que tout entier $p \leqslant  n$ ou bien appartient à la fois à $A$ et à
$B$, ou bien n'appartient à aucun des deux. On a donc
\[
\min(A\Delta B) > n \Longleftrightarrow A \cap [1, n] = B \cap [1, n].
\]  
\item Montrons que la suite $(X_n),$ où $X_n = {1, 2^n, 3^n, \cdots },$ converge vers le singleton $X =\{1\}.$ Si $n \in  \mathbb{N}^{\ast}$ est fixé,
et que $p > n$, on a $X_p \cap [1, 2^n] = \{1\}$ (car $2^p > 2^n$), et donc par
la question précédente $d(X,X_p) <\dfrac{ 1}{2^n }.$ Ainsi $d(X,X_p) \to  0$ quand $p \to \infty.$
\end{enumerate}
 \end{correction} 
 \end{document}

有哪位好心人能为我们解释一下这个问题吗?

感谢您的支持。

答案1

您对环境的定义exo对我来说太复杂了。据我所知,它仅定义了一个带有一个可选参数的环境,该参数使用\normalfont

\newenvironment{exo}[1][]
  {\normalfont}
  {}

使用全局文档类选项,draft 您可以标记所有超满的箱子:

\documentclass[11pt,draft]{book}
\usepackage[T1]{fontenc}
\usepackage[utf8]{inputenc}
\usepackage[french]{babel}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{amsfonts}
\usepackage{mathtools}
\usepackage{ntheorem}
\usepackage[most]{tcolorbox}
\usepackage{bbm}
\usepackage[nosolutionfiles]{answers} % for immediate answers (not stored in a file)
\theoremstyle{plain}
\theoremindent=40pt 
\theoremheaderfont{\normalfont\bfseries\hspace{-\theoremindent}}
\newtheorem{proposition}{Proposition}
\newtheorem{corollary}{Corollaire}
\newtheorem{theorem}{Théorème}
\newtheorem{lemma}{Lemme}
\newtheorem{remark}{Remarque}
\newtheorem{definition}{Définition}
\newtheorem{example}{Exemple}
\newtheorem{proof}{Démonstration}
\usetikzlibrary{decorations.pathmorphing}
\tcbuselibrary{skins}
\tcolorboxenvironment{theorem}{
    blanker,
    breakable,
    before skip=\topsep,
    after skip=\topsep,
    borderline west={1pt}{20pt}{double, shorten <=12pt}
    }
\tcolorboxenvironment{proposition}{
    blanker,
    breakable,
    before skip=\topsep,
    after skip=\topsep,
    borderline west={1pt}{20pt}{double, shorten <=12pt}
    }
\tcolorboxenvironment{definition}{
    blanker,
    breakable,
    before skip=\topsep,
    after skip=\topsep,
    borderline west={1pt}{20pt}{decoration={zigzag,amplitude=2pt,pre=moveto,pre length=12pt},decorate}
    }
\newtheorem{Exc}{Exercice}
\Newassociation{correction}{Soln}{mycor}
\Newassociation{indication}{Indi}{myind}
%\newcommand{\precorrection}{~{\bf \footnotesize [Exercice corrig\'e]}}
%\newcommand{\preindication}{~{\bf \footnotesize [Indication]}}
\renewcommand{\Solnlabel}[1]{\bf \emph{Correction #1}}
\renewcommand{\Indilabel}[1]{\bf \emph{Indication #1}}
\newenvironment{exo}[1][]
  {\normalfont}
  {}
\newcommand{\flag}[1]{}
\newtheorem{question}{Question}
\def\Tiny{\fontsize{4pt}{4pt}\selectfont}
\newcommand*{\eqdef}{\ensuremath{\overset{\mathclap{\text{\Tiny def}}}{=}}}
\begin{document}

\Opensolutionfile{mycor}[ficcorex]
\Opensolutionfile{myind}[ficind]


\begin{exo}
La différence symétrique de deux ensembles $A$ et $B$ est définie par
\[
A\Delta B \eqdef  (A \cup B)\setminus (A \cup B):
\]
\begin{enumerate}
  \item Soient $A \in \mathbb{N}^{prime}$ et $B \in  \mathbb{N}.$ On définit
\[
d(A:B) \coloneq
\begin{cases}
\dfrac{1}{\min(A \Delta B)} & \text{si} \, A \neq B \\
0 & \text{si} \, A=B.
\end{cases}
\]
Démontrer que si $A, B, C$ sont trois ensembles distincts de $\mathbb N^{\star},$ alors
\[
d(A,B) \leqslant   \max\left(d(A,C), d(C,B)\right)
\]
  \item Conclure que $d$ définit une distance sur $\mathcal{P}(\mathbb N^{\ast}).$
  \item  Montrer que pour tout $n \in  N^{\ast}$ et tous $A,B \subset \mathbb{N}^{\ast},$
\[
d(A B) < \dfrac{1}{n} \Longleftrightarrow  A\cap [1,n]=B\cap [1,n].
\]
  \item  On considère la suite $(X_n)$ dans $\mathcal P(\mathbb N^{\ast}),$ où
  \[
X_n = \{1,2^n, 3^n, \cdots \}
\]
(Noter que $X_1 = \{1, 2, 3, \cdots \}, X_2 = \{1, 4, 8 \cdots \}$ est l'ensemble des carrés, $X_3 =
\{1, 9, 27, \cdots \}$ est l'ensemble des cubes). Montrer que la suite $(X_n)$ converge vers
un ensemble $X \in \mathcal  P(\mathbb N)$ que l'on déterminera. (Indication : utiliser le résultat de la
question précédente).
\end{enumerate}
\end{exo}

 \begin{indication}
\begin{enumerate}
\item  Indication : on pourra utiliser l'inclusion $A\Delta B \subset (A\Delta C) \cup (C\Delta B).$
\end{enumerate}
\end{indication}

 \begin{correction}
 Commençons par montrer l'inclusion $A \Delta B \subset (A\Delta C) \cup  (C\Delta B)$ (même si
l'énoncé permettait de l'utiliser sans la démontrer). Soit $x  \in  A\Delta B = (A \setminus B) \cup  (B 
\setminus A).$
Supposons que $x \in  A \setminus B$ (l'autre cas étant symétrique). Si $x \in  C,$  on a $x \in  C \setminus 
B,$  et donc
$x \in  C\Delta B.$  Si $x \neq  C,$  on a $x \in  A \setminus C,$  et donc $x \in  A\Delta C.$  Dans les 
deux cas on obtient bien
$x \in  (A\Delta C) \cup  (C\Delta B),$  ce qu'on voulait.
\begin{enumerate}
\item Montrons maintenant l'inégalité
\[
d(A,B) \leqslant  max{d(A,C), d(C,B)}
\]
De l'inclusion $A\Delta B \subset (A\Delta C) \cup (C\Delta B)$ on déduit l'inégalité
\[
\min(A\Delta B) \geqslant \min(\min(A\Delta C), \min(C\Delta B)).
\]
En passant à l'inverse on obtient $\dfrac{1}{\min(A4B)}  \leqslant \max \left( \dfrac{1}{\min(A \Delta C)} , 
\min(C\Delta B)\right).$
\item  L'équivalence $d(A,B) = 0 \Longleftrightarrow  A = B$ découle immédiatement de la définition, de même
que l'égalité $d(A,B) = d(B,A).$  Enfin, l'inégalité triangulaire est une conséquence
de l'inégalité ultramétrique (c'est-à-dire l'inégalité démontrée dans la question précédente).
Ainsi $d$ définit une distance sur $\mathcal{P}(\mathbb{N}^{\ast}).$
\item Si $A = B$ les deux côtés de l'équivalence sont clairement vraie. Supposons donc $A \neq  B.$
Par définition on a
\[
d(A,B) < \dfrac{1}{n} \Longleftrightarrow \min(A \Delta B) > n.
\]
Or $\min(A\Delta B) > n$ signifie que tout entier $p \leqslant  n$ ou bien appartient à la fois à $A$ et à
$B$, ou bien n'appartient à aucun des deux. On a donc
\[
\min(A\Delta B) > n \Longleftrightarrow A \cap [1, n] = B \cap [1, n].
\]  
\item Montrons que la suite $(X_n),$ où $X_n = {1, 2^n, 3^n, \cdots },$ converge vers le singleton $X 
=\{1\}.$ Si $n \in  \mathbb{N}^{\ast}$ est fixé,
et que $p > n$, on a $X_p \cap [1, 2^n] = \{1\}$ (car $2^p > 2^n$), et donc par
la question précédente $d(X,X_p) <\dfrac{ 1}{2^n }.$ Ainsi $d(X,X_p) \to  0$ quand $p \to \infty.$
\end{enumerate}
 \end{correction} 
\end{document}

在此处输入图片描述

相关内容