我正在尝试在 beamer 中插入一个浮动在项目符号列表中的图像。
遗憾的是,结果是图像被放在一个新框架中,紧接着我插入代码的框架。
此外,我无法移动图像:\wrapfigure{R}、\wrapfigure{T} 等中的任何一个都会产生相同的结果,而我希望我的图像被放在右侧、顶部等位置。
这是我编写的代码
\documentclass[10pt,xcolor={table,dvipsnames},t]{beamer}
\usetheme{UCBerkeley}
\usepackage{graphicx}
\usepackage{wrapfig}
\begin{document}
\begin{frame}{Simplicial Subdivisions}
\begin{itemize}
\item Let $T=\sigma(x^0,...,x^n)$ be an n-simplex. A \textbf{simplicial subdivision} of T is a collection of (sub-) simplexes $\{T_i: i\in I\}$ such that $\bigcup_i T_i=\ \Bar{T}$ and $\forall i,j\ \Bar{T_j}\cap\Bar{T_j}$ either equals $\emptyset$ or the closure of a common face $\Bar{F_{ij}}$.
\begin{wrapfigure}{h}{0.25\textwidth}
\includegraphics[width=0.25\textwidth]{Subdivision.PNG}
\end{wrapfigure}
\pause
\item An important subdivision is the equilateral one
\pause
\item The \textbf{mesh of a subdivision} is the diameter of its largest element
\end{itemize}
\end{frame}
\end{document}
谢谢你的帮助
答案1
似乎使用普通的 TeX 宏包insbox
(enumitem
更改列表的右边距)就可以了。不过不确定有没有副作用。
\PassOptionsToPackage{demo}{graphicx}
\documentclass{beamer}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{enumitem}
\input{insbox}
\begin{document}
\begin{frame}{Simplicial Subdivisions}
\InsertBoxR{1}{\includegraphics[width=0.25\textwidth]{Subdivision.PNG}}
\begin{itemize}[label=$\blacktriangleright$, rightmargin=0.27\linewidth]
\item Let $T=\sigma(x^0,...,x^n)$ be an n-simplex. A \textbf{simplicial subdivision} of T is a collection of (sub-) simplexes $\{T_i: i\in I\}$ such that $\bigcup_i T_i=\ \Bar{T}$ and $\forall i,j\ \Bar{T_j}\cap\Bar{T_j}$ either equals $\emptyset$ or the closure of a common face $\Bar{F_{ij}}$.
\pause
\item An important subdivision is the equilateral one
\pause
\item The \textbf{mesh of a subdivision} is the diameter of its largest element
\end{itemize}
\end{frame}
\end{document}
答案2
假设您的 beamer 主题实际上是Berkeley
,我建议使用以下两列:
\documentclass[10pt,xcolor={table,dvipsnames},t]{beamer}
\usetheme{Berkeley}
\usepackage{graphicx}
\usepackage{wrapfig}
\usepackage[export]{adjustbox}
\begin{document}
\begin{frame}{Simplicial Subdivisions}
\begin{columns}
\begin{column}[t]{0.7\textwidth}
\begin{itemize}
\item Let $T=\sigma(x^0,...,x^n)$ be an n-simplex. A \textbf{simplicial subdivision} of T is a collection of (sub-) simplexes $\{T_i: i\in I\}$ such that $\bigcup_i T_i=\ \Bar{T}$ and $\forall i,j\ \Bar{T_j}\cap\Bar{T_j}$ either equals $\emptyset$ or the closure of a common face $\Bar{F_{ij}}$.
\pause
\item An important subdivision is the equilateral one
\pause
\item The \textbf{mesh of a subdivision} is the diameter of its largest element
\end{itemize}
\end{column}
\begin{column}[t]{0.25\textwidth} \vspace*{\topsep}
\onslide<1->
\includegraphics[width=\linewidth, valign=t]{example-image}
\end{column}
\end{columns}
\end{frame}
\end{document}