\documentclass{beamer}
\newcommand\Fontvi{\fontsize{2}{4}\selectfont}
\usepackage[utf8]{inputenc}
\usepackage[compat=1.1.0]{tikz-feynman}
\usepackage{amsmath, amsthm, amssymb,amsfonts}
\usepackage{graphicx}
\usepackage{tikz}
\usepackage{tcolorbox}
\usepackage{amsmath}
\usepackage{amsthm}
\usepackage{amssymb}
\usepackage{tikz-feynman}
\setcounter{MaxMatrixCols}{20}
%\usepackage{breqn}
\usepackage{tikz-feynman}
\usepackage{amsmath}
\newtheorem{rules}{Rule}
\usetheme{Antibes}
\usecolortheme{}
\title{Negative Dimensional Integral and Modified Method of Brackets}
\author[Sumit Banik]{\textbf {Work By-Sumit Banik\\ \footnotesize Supervised by: B Ananthanarayan}}
\institute{Indian Institute of Science\\Bangalore- 560012}
\date{}
\begin {document}
\begin {frame}
\begin{rules} \label{Rule2}
\begin{equation} \label{eq:rule-B}
\begin{split}
&(A_1 + \cdots + A_J)^\alpha
\\
&\quad=
\frac1{\Gamma(-\alpha)}
\int_{c_1-i\infty}^{c_1+i\infty}\frac{dz_1}{2\pi i}
\cdots
\int_{c_J-i\infty}^{c_J+i\infty}\frac{dz_J}{2\pi i}
\,
<z_1 + \cdots + z_J - \alpha>
\,
A_1^{z_1}
\cdots
A_J^{z_J}
\,
\Gamma(-z_1)
\cdots
\Gamma(-z_J)\,.
\end{split}
\end{equation}
\end{rules}
\end {frame}
\end {document}
答案1
我会选择一个multline
环境。无关:不要加载两次包,而且,如果你加载了amssymb
,就不需要加载了amsfonts
。
\documentclass{beamer}
\newcommand\Fontvi{\fontsize{2}{4}\selectfont}
\usepackage[utf8]{inputenc}
\usepackage[compat=1.1.0]{tikz-feynman}
\usepackage{mathtools, amsthm, amssymb}
\usepackage{graphicx}
\usepackage{tikz}
\usepackage{tcolorbox}
\usepackage{tikz-feynman}
\setcounter{MaxMatrixCols}{20}
\usepackage{tikz-feynman}
\newtheorem{rules}{Rule}
\usetheme{Antibes}
\usecolortheme{}
\title{Negative Dimensional Integral and Modified Method of Brackets}
\author[Sumit Banik]{\textbf {Work By-Sumit Banik\\ \footnotesize Supervised by: B Ananthanarayan}}
\institute{Indian Institute of Science\\Bangalore- 560012}
\date{}
\begin {document}
\begin {frame}
\begin{rules} \label{Rule2}
\begin{multline}\label{eq:rule-B}
(A_1 + \cdots + A_J)^\alpha =
\\
\frac1{\Gamma(-\alpha)}
\int_{c_1-i\infty}^{c_1+i\infty}\frac{dz_1}{2\pi i}
\cdots
\int_{c_J-i\infty}^{c_J+i\infty}\frac{dz_J}{2\pi i}
\,
\langle z_1 + \cdots + z_J - \alpha\rangle \times \\
A_1^{z_1}
\cdots
A_J^{z_J}
\,
\Gamma(-z_1)
\cdots
\Gamma(-z_J)\phantom{\times}
\end{multline}
\end{rules}
\end {frame}
\end {document}
答案2
我认为,如果再增加几个换行符,等式会变得更好。
\documentclass{beamer}
\usetheme{Antibes}
\usepackage{amsmath, amsthm, amssymb}%,amsfonts}
\newtheorem{rules}{Rule}
\usepackage{graphicx}
\usepackage[utf8]{inputenc}
%% I've commented out all instructions that are repetitive or
%% do not affect the body of the sample document.
%\newcommand\Fontvi{\fontsize{2}{4}\selectfont}
%\usepackage[compat=1.1.0]{tikz-feynman}
%\usepackage{tikz}
%\usepackage{tcolorbox}
%\usepackage{amsmath}
%\usepackage{amsthm}
%\usepackage{amssymb}
%\usepackage{tikz-feynman}
%\setcounter{MaxMatrixCols}{20}
%\usepackage{breqn}
%\usepackage{tikz-feynman}
%\usepackage{amsmath}
%\usecolortheme{}
%\title{Negative Dimensional Integral and Modified Method of Brackets}
%\author[Sumit Banik]{\textbf {Work By-Sumit Banik\\ \footnotesize Supervised by: B Ananthanarayan}}
%\institute{Indian Institute of Science\\Bangalore- 560012}
%\date{}
\begin{document}
\begin{frame}
\begin{rules} \label{Rule2}
\begin{equation} \label{eq:rule-B}
\begin{split}
&(A_1 + \dots + A_J)^\alpha \\
&\quad= \frac1{\Gamma(-\alpha)}
\int_{c_1-i\infty}^{c_1+i\infty}\frac{dz_1}{2\pi i}
\dotsm
\int_{c_J-i\infty}^{c_J+i\infty}\frac{dz_J}{2\pi i}
\\
&\quad< z_1 + \dots + z_J - \alpha\\
&\quad> A_1^{z_1}\dotsm A_J^{z_J}
\,\Gamma(-z_1)\dotsm\Gamma(-z_J)\,.
\end{split}
\end{equation}
\end{rules}
\end{frame}
\end{document}
附录,灵感来自于@Bernard 的平行回答:如果<
和>
并不表示“小于”和“大于”,而是应该被解释为尖括号(在 TeX 用语中分别为\langle
和\rangle
),那么最好将上面显示的答案的第三行和第四行合并为一行:
\documentclass{beamer}
\usetheme{Antibes}
\usepackage{amsmath, amsthm, amssymb}
\newtheorem{rules}{Rule}
\usepackage{graphicx}
\usepackage[utf8]{inputenc}
\begin{document}
\begin{frame}
\begin{rules} \label{Rule2}
\begin{equation} \label{eq:rule-B}
\begin{split}
&(A_1 + \dots + A_J)^\alpha \\
&\quad= \frac1{\Gamma(-\alpha)}
\int_{c_1-i\infty}^{c_1+i\infty}\frac{dz_1}{2\pi i}
\dotsm
\int_{c_J-i\infty}^{c_J+i\infty}\frac{dz_J}{2\pi i} \\
&\qquad\times
\langle z_1 + \dots + z_J - \alpha\rangle
\,A_1^{z_1}\dotsm A_J^{z_J}
\,\Gamma(-z_1)\dotsm\Gamma(-z_J)\,.
\end{split}
\end{equation}
\end{rules}
\end{frame}
\end{document}
答案3
您应该拆分方程式。请考虑以下代码:
\documentclass{beamer}
\usepackage[compat=1.1.0]{tikz-feynman}
\usepackage{amsmath, amsthm, amssymb,amsfonts}
\usepackage{tikz}
\newtheorem{rules}{Rule}
\usetheme{Antibes}
\begin {document}
\begin {frame}
\begin{rules} \label{Rule2}
\begin{align} \label{eq:rule-B}
&(A_1 + \cdots + A_J)^\alpha
\nonumber\\
\quad=&
\frac1{\Gamma(-\alpha)}
\int_{c_1-i\infty}^{c_1+i\infty}\frac{dz_1}{2\pi i}
\cdots
\int_{c_J-i\infty}^{c_J+i\infty}\frac{dz_J}{2\pi i}
\,\nonumber\\
&<z_1 + \cdots + z_J - \alpha>
\,
A_1^{z_1}
\cdots
A_J^{z_J}
\,
\Gamma(-z_1)
\cdots
\Gamma(-z_J)\,.
\end{align}
\end{rules}
\end {frame}
\end {document}