有人能向我解释为什么数学模式中的某些文本会超出边距吗?
编辑:抱歉,问题格式不好。为什么我粘贴东西时,它看起来像一个句子?
\documentclass[a4paper,12pt]{extarticle}
\usepackage[utf8]{inputenc}
\usepackage{amsthm}
\usepackage{amsmath}
\usepackage{amssymb}
\newtheorem{manualtheoreminner}{Theorem}
\newenvironment{manualtheorem}[1]{%
\renewcommand\themanualtheoreminner{#1}%
\manualtheoreminner
}{\endmanualtheoreminner}
\begin{document}
\begin{manualtheorem}{2.3 (Dimension Theorem}
\begin{proof}
Let nullity($\mathsf{T}) = m$ and $\mathrm{dim}(\mathsf{V}) = n$. Since $\mathsf{N(T)}$ is a subspace of $\mathsf{V}$, nullity$(\mathsf{T}) \subseteq \beta$ by Fact 1.5. Hence $a_1\beta_1 + \ldots + a_m\beta_m = n(t)$ and $\mathsf{T}(a_1\beta_1 + \ldots + a_m\beta_m) = 0$ for all $a$, and by linearity $a_1\mathsf{T}(\beta_1) + \ldots + a_m\mathsf{T}(\beta_m) = 0$ for all $a$. Hence no set containing any one of $\{ \mathsf{T}(\beta_1), \ldots, \mathsf{T}(\beta_m)\}$ can be linearly independent.
\paragraph{} Now since $\mathsf{V}$ is generated by $\{\beta_1, \ldots, \beta_n \}$, it follows that $\mathsf{R(T)}$ is generated by $\{\mathsf{T}(\beta_1), \ldots, \mathsf{T}(\beta_n)\}$ by Thm 2.2. Since any set containing $\{\mathsf{T}(\beta_1), \ldots, \mathsf{T}(\beta_m)\}$ is linearly dependent, it follows that $\{\mathsf{T}(\beta_{m+1}), \ldots, \mathsf{T}(\beta_{n})\}$ generates $\mathsf{R(T)}$.
\paragraph{} $a_{m+1}\beta_{m+1} + \ldots + a_n\beta_n \neq n(t)$. Suppose otherwise, $a_1\beta_1 + \ldots a_m\beta_m = a_{m+1}\beta_{m+1} + \ldots + a_n\beta_n$. Contradiction of linear independence. Hence $\mathsf{T}(a_{m+1}\beta_{m+1} + \ldots + a_n\beta_n) \neq 0$; $\{ \mathsf{T}(\beta_{m+1}), \ldots, \mathsf{T}(\beta_n)\}$ is linearly independent.
\paragraph{}Thus $\{\mathsf{T}(\beta_{m+1}), \ldots, \mathsf{T}(\beta_n) \}$ is the basis of $\mathsf{R(T)}$ and rank($\mathsf{T}) = \mathrm{dim}(\mathsf{V}) - \mathrm{nullity}(\mathsf{T)}$.
\end{proof}
\end{manualtheorem}
\end{document}
答案1
我会像下面这样编写代码。主要变化是:
- 替换
\ldots
为\dots
- 使用
proof
环境manualtheorem
- 例如使用
\operatorname{}
for (或者在序言中使用,然后使用,如@Sebastiano 提醒的那样)rank
\DeclareMathOperator{\rank}{rank}
\rank
- 用于
\dim
尺寸
韦伯
\documentclass[a4paper,12pt]{extarticle}
\usepackage[utf8]{inputenc}
\usepackage{amsthm}
\usepackage{amsmath}
\usepackage{amssymb}
\newtheorem{manualtheorem}{Theorem}
%\newenvironment{manualtheorem}[1]{%
% \renewcommand\themanualtheoreminner{#1}%
% \manualtheoreminner
%}{\endmanualtheoreminner}
\begin{document}
\begin{manualtheorem}[Dimension Theorem]Statement here.
\end{manualtheorem}
\begin{proof}
Let $\operatorname{nullity}(\mathsf{T}) = m$ and $\dim(\mathsf{V}) = n$. Since $\mathsf{N(T)}$ is a subspace of $\mathsf{V}$, $\operatorname{nullity}(\mathsf{T}) \subseteq \beta$ by Fact 1.5. Hence $a_1\beta_1 + \dots + a_m\beta_m = n(t)$ and $\mathsf{T}(a_1\beta_1 + \dots + a_m\beta_m) = 0$ for all $a$, and by linearity $a_1\mathsf{T}(\beta_1) + \dots + a_m\mathsf{T}(\beta_m) = 0$ for all $a$. Hence no set containing any one of $\{ \mathsf{T}(\beta_1), \dots, \mathsf{T}(\beta_m)\}$ can be linearly independent.
Now since $\mathsf{V}$ is generated by $\{\beta_1, \dots, \beta_n \}$, it follows that $\mathsf{R(T)}$ is generated by $\{\mathsf{T}(\beta_1), \dots, \mathsf{T}(\beta_n)\}$ by Thm~2.2. Since any set containing $\{\mathsf{T}(\beta_1), \dots, \mathsf{T}(\beta_m)\}$ is linearly dependent, it follows that $\{\mathsf{T}(\beta_{m+1}), \dots, \mathsf{T}(\beta_{n})\}$ generates $\mathsf{R(T)}$.
We claim that $a_{m+1}\beta_{m+1} + \dots + a_n\beta_n \neq n(t)$. Suppose otherwise, $a_1\beta_1 + \dots a_m\beta_m = a_{m+1}\beta_{m+1} + \dots + a_n\beta_n$. Contradiction of linear independence. Hence $\mathsf{T}(a_{m+1}\beta_{m+1} + \dots + a_n\beta_n) \neq 0$ and so $\{ \mathsf{T}(\beta_{m+1}), \dots, \mathsf{T}(\beta_n)\}$ is linearly independent.
Thus $\{\mathsf{T}(\beta_{m+1}), \dots, \mathsf{T}(\beta_n) \}$ is the basis of $\mathsf{R(T)}$ and $\operatorname{rank}(\mathsf{T}) = \dim(\mathsf{V}) - \operatorname{nullity}(\mathsf{T)}$.
\end{proof}
\end{document}