将独立内容转换为文章时出现的问题

将独立内容转换为文章时出现的问题

我在文档类别“standalone”下绘制了以下流程图,但要合并到的原始文档的文档类别为“article”。因此,当我将代码粘贴到主文档中时,流程图会缩小,与原始图表相比变得太小。我希望流程图填满整个 A4 大小的页面。

\documentclass[border=10pt]{standalone}
\usepackage{amsmath}
\usepackage{anyfontsize}
\usepackage{tikz}
\usetikzlibrary{arrows,positioning,shapes.geometric}
\begin{document}
    \begin{tikzpicture}[>=latex']
        \tikzset{block/.style= {draw, rectangle, align=center,minimum width=3.3cm,minimum height=.1cm},
        }
        \node [block,text width=2cm]  (start) {\fontsize{3}{6}\selectfont Feynman Integral};
        \node [block,text width=2cm, below = .2cm of start] (Z1){\fontsize{3}{6}\selectfont Schwinger  Parametrization};
        \node [coordinate, below = .3cm of Z1] (ADL){};
        \node [coordinate, left = 2cm of ADL] (AUL){};
        \node [coordinate, below = .3cm of Z1] (BUL){};
        \node [coordinate, right = 2cm of BUL] (BDL){};

        \node [block,text width=2cm, below = .2cm of AUL] (A1){{\fontsize{2.4}{3}\selectfont Original Method of Brackets}};
         \node [block,text width=2cm, below = .2cm of BDL] (A2){{\fontsize{2.4}{3}\selectfont Modified Method of Brackets}};
        \node [block,text width=2.5cm, below = .2cm of A1,align=center] (B1){{\fontsize{2.4}{6}\selectfont \textbf{Rule 1}: Expanding exponentials \\
        \(e^{-A} = \sum_{n=0}^{\infty}\frac{(-1)^n A^n}{\Gamma(1+n)}\)}};
        \node [block,text width=2.6cm, below = .2cm of A2] (B2){{\fontsize{2.4}{3}\selectfont \textbf{Rule 1}: Expanding Exponentials\\
         \(e^{-A} = \oint \frac{dx}{2 \pi i} A^{-z}\Gamma(-z)\)}};
        \node [block,text width=2cm,  below= .2cm of B2] (C2){{\fontsize{2.4}{3}\selectfont \textbf{Rule 2}: Expanding Multinomials
        \begin{align*}
            (a_1 + a_2 +...+ a_r)^{\alpha}= \oint\frac{dz_1}{2 \pi i}...\oint\frac{dz_r}{2 \pi i} a_{1}^{z_1}...a_{r}^{z_r}\\\langle -\alpha+z_1+...+z_r\rangle\frac{\Gamma(-z_1)...\Gamma(-z_2)}{\Gamma(-\alpha)}
        \end{align*}}};
         \node [block,text width=2.5cm, below = .2cm of B1] (C1){{\fontsize{2.4}{3}\selectfont \textbf{Rule 2}: Expanding Multinomials
        \begin{align*}
            (a_1 + a_2 +...+ a_r)^{\alpha}= \sum_{m_1,...,m_r} \phi_{m_1,...,m_r} \\a_{1}^{m_1}...a_{r}^{m_r}\frac{\langle -\alpha+m_1+...+m_r\rangle}{\Gamma(-\alpha)}
        \end{align*}}};
         \node [block,text width=2cm, below = .2cm of C1] (D1){{\fontsize{2.4}{3}\selectfont \textbf{Rule 3}: Introduce Bracket
         \begin{align*}
          \int_{0}^{\infty}x^{l-1}= \langle l\rangle   
         \end{align*}}};
         \node [block,text width=2cm, below = .2cm of C2] (D2){{\fontsize{2.4}{3}\selectfont \textbf{Rule 3}: Introduce Bracket
         \begin{align*}
          \int_{0}^{\infty}x^{l-1}= \langle l\rangle   
         \end{align*}}};
 \node [block,text width=2.5cm, below = .2cm of D1] (E1){{\fontsize{2.4}{3}\selectfont \textbf{Rule 4}: Eliminate Bracket\\
 \vspace{.3cm}An expression of the form
         \begin{align*}
          \sum_{n_1,...,n_r}\phi_{1,...,r}f(n_1,...,n_r)\langle a_{11}n_{1}+...+a_{1r}n_{r}+c{1}\rangle\\\times \langle a_{s1}n_{1}+...+a_{sr}n_{r}+c{1}\rangle
         \end{align*}
       as\(\frac{1}{|detA|}f(n_{1}^{*},...,n_{r}^{*})\Gamma(-n_{1}^{*})...\Gamma(-n_{r}^{*})\)}};
 \node [block,text width=2.5cm, below = .2cm of D2] (E2){{\fontsize{2.4}{3}\selectfont \textbf{Rule 4}: Eliminate Bracket-\\
 \vspace{.3cm}An expression of the form
         \begin{align*}
          \oint\frac{dz_{1}}{2\pi i}...\oint\frac{dz_{1}}{2\pi i}f(z_{1},...,z_{r})\langle a_{s1}z_{1}+...+a_{sr}z_{r}+c{1}\rangle\\\times \langle a_{s1}z_{1}+...+a_{sr}z_{r}+c{1}\rangle
         \end{align*}
         as \(\frac{1}{|detA|}f(z_{1}^{*},...,z_{r}^{*})\)}};
        \path[draw, ->]
            (start)edge(Z1)
           (Z1)--(ADL)
            (ADL)--(AUL)
            (AUL)edge(A1)
            (A1) edge (B1)
            (B1)edge(C1)
            (C1)edge(D1)
            (D1)edge(E1)
            (Z1)--(BUL)
            (BUL)--(BDL)
            (BDL)edge(A2)
            (A2) edge (B2)
            (B2)edge(C2)
            (C2)--(D2)
            (D2)edge(E2)
            ;
    \end{tikzpicture}
\end{document}

答案1

standalone要将文档类转换为,article只需将其替换standalonearticle。该图像将在页面中居中,将其括在\begin{center}...中\end{center}或将其放在figure浮动环境中:

\documentclass]{article}
\usepackage{amsmath}
\usepackage{anyfontsize}
\usepackage{tikz}
\usetikzlibrary{arrows,positioning,shapes.geometric}

\begin{document}
\begin{figure}[ht]
\centering
% < your image code>
\end{figure}
\end{document}

但是,您的图表可以绘制为树。使用forest包并考虑mathtoolsmathclapnccmath中等大小的分数(\mfrac),可以在节点中使用更大的字体大小(\scriptsize)并使代码更短更清晰:

\documentclass{article}
\usepackage{mathtools, nccmath}
\usepackage[edges]{forest}
\usetikzlibrary{arrows.meta}

%---------------- show page layout. don't use in a real document!
\usepackage{showframe}
\renewcommand\ShowFrameLinethickness{0.15pt}
\renewcommand*\ShowFrameColor{\color{red}}

\begin{document}
\begin{center} % or use \begin{figure}[ht]\centering
\setlength\abovedisplayskip{2pt}%
    \begin{forest}
for tree = {
    draw,
    text width=54mm,
    font=\scriptsize,
    %
    grow = south,
    forked edge,  
    s sep = 6mm,  
    l sep = 4mm,  
 fork sep = 2mm,
if level<= 2{text centered}{},
tier/.option = level, % for aligning nodes to levels  
    %
edge = {-{Stealth[length=3pt]}, semithick},
            }
[Feynman Integra
    [Schwinger  Parametrization
%%%% left branch
        [Original Method of Brackets
            [\textbf{Rule 1}: Expanding exponentials
             \[{e^{-A} = \sum_{n=0}^{\infty}\mfrac{(-1)^n A^n}{\Gamma(1+n)}}\]   
                [\textbf{Rule 2}: Expanding Multinomials
                    {\begin{multline*}
                        (a_1 + a_2 +\dotsm+ a_r)^{\alpha}= \\
                            \sum_{\mathclap{m_1,\dotsc,m_r}} \phi_{m_1,\dotsc,m_r}
                            a_{1}^{m_1}\dotsm a_{r}^{m_r}\\
                                \mfrac{\langle -\alpha+m_1+\dotsm+m_r\rangle}{\Gamma(-\alpha)}
                    \end{multline*}} 
                    [\textbf{Rule 3}: Introduce Bracket
                         \[ {\int_{0}^{\infty}x^{l-1}= \langle l\rangle}    \]  
                        [\textbf{Rule 4}: Eliminate Bracket\\
                      An expression of the form
                             {\begin{multline*}
                        \sum_{\mathclap{n_1,\dotsc,n_r}}\phi_{1,\dotsc,r}f(n_1,\dotsc.,n_r)\\
                            \langle a_{11}n_{1}+\dotsm+a_{1r}n_{r}+c{1}\rangle\\
                               \times \langle a_{s1}n_{1}+\dotsm+a_{sr}n_{r}+c{1}\rangle
                             \end{multline*}}
                        as {$\mfrac{1}{|detA|}f(n_{1}^{*},\dotsc,n_{r}^{*})  \Gamma(-n_{1}^{*})\dotsm\Gamma(-n_{r}^{*})$}
                        ]
                    ]
                ]
            ]
        ]
        [Original Method of Brackets
            [\textbf{Rule 1}: Expanding Exponentials
                {\begin{multline*}
        (a_1 + a_2 +\dotsm+ a_r)^{\alpha}\\ 
        = \oint\frac{dz_1}{2 \pi i}\dotsm\oint\frac{dz_r}{2\pi i} a_{1}^{z_1}\dotsm a_{r}^{z_r}   \\
            \langle - \alpha+z_1 + \dotsm +z_r\rangle\cdot
                          \frac{\Gamma(-z_1)\dotsm \Gamma(-z_2)}{\Gamma(-\alpha)}
                \end{multline*}}
                [\textbf{Rule 2}: Expanding Multinomials
                    {\begin{multline*}
                (a_1 + a_2 +\dotsm + a_r)^{\alpha} = \\
                \oint\frac{dz_1}{2 \pi i}\dots\oint\frac{dz_r}{2 \pi i} a_{1}^{z_1}...a_{r}^{z_r}\\
                \langle -\alpha+z_1+\dotsm + z_r\rangle\frac{\Gamma(-z_1)\dotsm\Gamma(-z_2)}{\Gamma(-\alpha)}
                    \end{multline*}}
                    [\textbf{Rule 3}: Introduce Bracket
                     \[ {\int_{0}^{\infty}x^{l-1}= \langle l\rangle}  \]
                        [\textbf{Rule 4}: Eliminate Bracket\\
                      An expression of the form
                             {\begin{multline*}
                        \sum_{\mathclap{n_1,\dotsc,n_r}}\phi_{1,\dotsc,r}f(n_1,\dotsc.,n_r)\\
                            \langle a_{11}n_{1}+\dotsm+a_{1r}n_{r}+c{1}\rangle\\
                               \times \langle a_{s1}n_{1}+\dotsm+a_{sr}n_{r}+c{1}\rangle
                             \end{multline*}}
                        as {$\mfrac{1}{|detA|}f(n_{1}^{*},\dotsc,n_{r}^{*})  \Gamma(-n_{1}^{*})\dotsm\Gamma(-n_{r}^{*})$}
                        ]                     
                    ]
                ]
            ]
        ]
    ]
]
    \end{forest}
\end{center} % or use `\end{figure}
\end{document}

在此处输入图片描述

(红线表示文本边框)

答案2

您的输出实际上非常小。\scalebox{scale}{content}让您调整图表的大小。

\documentclass{article}
\usepackage[margin=2cm]{geometry}
\usepackage{amsmath}
\usepackage{anyfontsize}
\usepackage{tikz}
\usetikzlibrary{arrows,positioning,shapes.geometric}
\begin{document}
\begin{center}
\scalebox{2}{
    \begin{tikzpicture}[>=latex']
\tikzset{block/.style= {draw, rectangle, align=center,minimum width=3.3cm,minimum height=.1cm},
}
\node [block,text width=2cm]  (start) {\fontsize{3}{6}\selectfont Feynman Integral};
\node [block,text width=2cm, below = .2cm of start] (Z1){\fontsize{3}{6}\selectfont Schwinger  Parametrization};
\node [coordinate, below = .3cm of Z1] (ADL){};
\node [coordinate, left = 2cm of ADL] (AUL){};
\node [coordinate, below = .3cm of Z1] (BUL){};
\node [coordinate, right = 2cm of BUL] (BDL){};

\node [block,text width=2cm, below = .2cm of AUL] (A1){{\fontsize{2.4}{3}\selectfont Original Method of Brackets}};
\node [block,text width=2cm, below = .2cm of BDL] (A2){{\fontsize{2.4}{3}\selectfont Modified Method of Brackets}};
\node [block,text width=2.5cm, below = .2cm of A1,align=center] (B1){{\fontsize{2.4}{6}\selectfont \textbf{Rule 1}: Expanding exponentials \\
        \(e^{-A} = \sum_{n=0}^{\infty}\frac{(-1)^n A^n}{\Gamma(1+n)}\)}};
\node [block,text width=2.6cm, below = .2cm of A2] (B2){{\fontsize{2.4}{3}\selectfont \textbf{Rule 1}: Expanding Exponentials\\
        \(e^{-A} = \oint \frac{dx}{2 \pi i} A^{-z}\Gamma(-z)\)}};
\node [block,text width=2cm,  below= .2cm of B2] (C2){{\fontsize{2.4}{3}\selectfont \textbf{Rule 2}: Expanding Multinomials
        \begin{align*}
        (a_1 + a_2 +...+ a_r)^{\alpha}= \oint\frac{dz_1}{2 \pi i}...\oint\frac{dz_r}{2 \pi i} a_{1}^{z_1}...a_{r}^{z_r}\\\langle -\alpha+z_1+...+z_r\rangle\frac{\Gamma(-z_1)...\Gamma(-z_2)}{\Gamma(-\alpha)}
        \end{align*}}};
\node [block,text width=2.5cm, below = .2cm of B1] (C1){{\fontsize{2.4}{3}\selectfont \textbf{Rule 2}: Expanding Multinomials
        \begin{align*}
        (a_1 + a_2 +...+ a_r)^{\alpha}= \sum_{m_1,...,m_r} \phi_{m_1,...,m_r} \\a_{1}^{m_1}...a_{r}^{m_r}\frac{\langle -\alpha+m_1+...+m_r\rangle}{\Gamma(-\alpha)}
        \end{align*}}};
\node [block,text width=2cm, below = .2cm of C1] (D1){{\fontsize{2.4}{3}\selectfont \textbf{Rule 3}: Introduce Bracket
        \begin{align*}
        \int_{0}^{\infty}x^{l-1}= \langle l\rangle   
        \end{align*}}};
\node [block,text width=2cm, below = .2cm of C2] (D2){{\fontsize{2.4}{3}\selectfont \textbf{Rule 3}: Introduce Bracket
        \begin{align*}
        \int_{0}^{\infty}x^{l-1}= \langle l\rangle   
        \end{align*}}};
\node [block,text width=2.5cm, below = .2cm of D1] (E1){{\fontsize{2.4}{3}\selectfont \textbf{Rule 4}: Eliminate Bracket\\
        \vspace{.3cm}An expression of the form
        \begin{align*}
        \sum_{n_1,...,n_r}\phi_{1,...,r}f(n_1,...,n_r)\langle a_{11}n_{1}+...+a_{1r}n_{r}+c{1}\rangle\\\times \langle a_{s1}n_{1}+...+a_{sr}n_{r}+c{1}\rangle
        \end{align*}
        as\(\frac{1}{|detA|}f(n_{1}^{*},...,n_{r}^{*})\Gamma(-n_{1}^{*})...\Gamma(-n_{r}^{*})\)}};
\node [block,text width=2.5cm, below = .2cm of D2] (E2){{\fontsize{2.4}{3}\selectfont \textbf{Rule 4}: Eliminate Bracket-\\
        \vspace{.3cm}An expression of the form
        \begin{align*}
        \oint\frac{dz_{1}}{2\pi i}...\oint\frac{dz_{1}}{2\pi i}f(z_{1},...,z_{r})\langle a_{s1}z_{1}+...+a_{sr}z_{r}+c{1}\rangle\\\times \langle a_{s1}z_{1}+...+a_{sr}z_{r}+c{1}\rangle
        \end{align*}
        as \(\frac{1}{|detA|}f(z_{1}^{*},...,z_{r}^{*})\)}};
\path[draw, ->]
(start)edge(Z1)
(Z1)--(ADL)
(ADL)--(AUL)
(AUL)edge(A1)
(A1) edge (B1)
(B1)edge(C1)
(C1)edge(D1)
(D1)edge(E1)
(Z1)--(BUL)
(BUL)--(BDL)
(BDL)edge(A2)
(A2) edge (B2)
(B2)edge(C2)
(C2)--(D2)
(D2)edge(E2)
;
\end{tikzpicture}
}
\end{center}
\end{document}

但是,您选择的字体大小仍然会使字母看起来很小。考虑使用相对字体大小(缩放包是一个不错的选择)。

相关内容