删除抽认卡课堂中抽认卡周围的空间

删除抽认卡课堂中抽认卡周围的空间

考虑第 3 章中给出的示例文档文档flashcards班级。

\documentclass[avery5388,grid,frame]{flashcards}
\cardfrontstyle[\large\slshape]{headings}
\cardbackstyle{empty}
\begin{document}
\cardfrontfoot{Functional Analysis}
\begin{flashcard}[Definition]{Norm on a Linear Space \\ Normed Space}
A linear/vector space with a norm is called a \emph{normed}
\end{flashcard}

\begin{flashcard}[Definition]{Inner Product}
  Let $X$ be a complex linear space. An \emph{inner product} a mapping that associates to each pair of vectors $x$, $y$ denoted $(x,y)$, that satisfies Additivity, Homogeneity, Symmetry and positive Definiteness.
\end{flashcard}
\end{document}

在打印这些抽认卡时,我不想花费额外的时间来剪掉抽认卡周围的多余空白。

但是,尝试使用该包减少边距会geometry与类选项发生冲突,因为它已经使用该包并且\setlength{\textheight}{854}也无济于事。我该如何解决这个问题?

编辑:如果所有边距的长度都相同,那么我就可以在打印之前放大文档,从而有效地消除空白。

答案1

来自文档,第十页上有一个选项\setlength{\cardmargin}{0 pt}可用于更改页边距。

编辑:使用评论中的信息更新答案。

您可以根据纸张设置纸张边距和卡片尺寸,这样就不会出现边距。下面是可以在一张 A4 纸上放置 3 张卡片且无边距的代码。

\documentclass[avery5388,grid,frame]{flashcards}
\cardfrontstyle[\large\slshape]{headings}
\cardbackstyle{empty}
\usepackage{geometry}
\geometry{
        a4paper,
        total={210mm,297mm},
        left=0mm,
        top=0mm,
}
%
\setlength{\cardheight}{99mm}  % 99=297/3
\setlength{\cardwidth}{210mm}
\setlength{\topskip}{0mm}
%

\begin{document}
\cardfrontfoot{Functional Analysis}
\begin{flashcard}[Definition]{Inner Product}
Let $X$ be a complex linear space. An \emph{inner product} a mapping that associates to each pair of vectors $x$, $y$ denoted $(x,y)$, that satisfies Additivity, Homogeneity, Symmetry and positive definiteness.
\end{flashcard}
\begin{flashcard}[Definition]{Inner Product}
Let $X$ be a complex linear space. An \emph{inner product} a mapping that associates to each pair of vectors $x$, $y$ denoted $(x,y)$, that satisfies Additivity, Homogeneity, Symmetry and positive definiteness.
\end{flashcard}
\begin{flashcard}[Definition]{Inner Product}
Let $X$ be a complex linear space. An \emph{inner product} a mapping that associates to each pair of vectors $x$, $y$ denoted $(x,y)$, that satisfies Additivity, Homogeneity, Symmetry and positive definiteness.
\end{flashcard}
\end{document}

如果您使用不同的纸张尺寸,您可以在软件包的选项中进行调整geometry

相关内容