{\small
\begin{multline}
\label{eq:kinem}
^{i-1}\mathit{T}_i = \left[
\begin{matrix}
\cos^2\phi_i(\cos\kappa_i s_i -1)+1 \\
\sin\phi_i \cos\phi_i (\cos\kappa_i s_i -1) \\
\cos\phi_i \sin\kappa_i s_i\\
0 \\
\end{matrix}\right.
\\
\left
\begin{matrix}
\sin\phi_i \cos\phi_i (\cos\kappa_i s_i -1)&-\cos\phi_i \sin\kappa_i s_i\\
\cos^{2}\phi_i (1-\cos\kappa_i s_i)+\cos\kappa_i s_i& -\sin\phi_i \sin\kappa_i s_i\\
\sin\phi_i \sin\kappa_i s_i&\cos\kappa_i s_i\\
0 & 0\\
\end{matrix}\right.
\\
\left.
\begin{matrix}
\dfrac{\cos\phi_i(\cos\kappa_i s_i -1)}{\kappa_i}\\
\dfrac{\sin\phi_i(\cos\kappa_i s_i -1)}{\kappa_i}\\
\dfrac{\sin\kappa_i s_i}{\kappa_i}\\
1
\end{matrix}\right]
\end{multline}}
答案1
如果您不想要括号,则无需提供\left
. 和\right
。您必须匹配开始和结束的括号大小,为此,我使用了\vphantom
,代码如下:
\documentclass{book}
\usepackage{mathtools}
\begin{document}
{\small
\begin{multline}
\label{eq:kinem}
^{i-1}\mathit{T}_i = \left[
\begin{matrix}
\cos^2\phi_i(\cos\kappa_i s_i -1)+1\vphantom{\dfrac{\cos\phi_i(\cos\kappa_i s_i -1)}{\kappa_i}} \\
\sin\phi_i \cos\phi_i (\cos\kappa_i s_i -1) \vphantom{\dfrac{\sin\phi_i(\cos\kappa_i s_i -1)}{\kappa_i}}\\
\cos\phi_i \sin\kappa_i s_i\vphantom{\dfrac{\sin\kappa_i
s_i}{\kappa_i}}\\
0 \\
\end{matrix}\right.
\\
\begin{matrix}
\sin\phi_i \cos\phi_i (\cos\kappa_i s_i -1)&-\cos\phi_i \sin\kappa_i s_i\\
\cos^{2}\phi_i (1-\cos\kappa_i s_i)+\cos\kappa_i s_i& -\sin\phi_i \sin\kappa_i s_i\\
\sin\phi_i \sin\kappa_i s_i&\cos\kappa_i s_i\\
0 & 0\\
\end{matrix}
\\
\left.
\begin{matrix}
\dfrac{\cos\phi_i(\cos\kappa_i s_i -1)}{\kappa_i}\\
\dfrac{\sin\phi_i(\cos\kappa_i s_i -1)}{\kappa_i}\\
\dfrac{\sin\kappa_i s_i}{\kappa_i}\\
1
\end{matrix}\right]
\end{multline}}
\end{document}
输出
答案2
正如我在评论中所说,你实际上并不需要\left.
(你忘记了“ .
”)和\right.
中间行的:
\documentclass{article}
\usepackage{amsmath}
\begin{document}
\pagestyle{empty}
{\small
\begin{multline}
\label{eq:kinem}
^{i-1}\mathit{T}_i = \left[
\begin{matrix}
\cos^2\phi_i(\cos\kappa_i s_i -1)+1 \\
\sin\phi_i \cos\phi_i (\cos\kappa_i s_i -1) \\
\cos\phi_i \sin\kappa_i s_i\\
0 \\
\end{matrix}\right.
\\
\begin{matrix}
\sin\phi_i \cos\phi_i (\cos\kappa_i s_i -1)&-\cos\phi_i \sin\kappa_i s_i\\
\cos^{2}\phi_i (1-\cos\kappa_i s_i)+\cos\kappa_i s_i& -\sin\phi_i \sin\kappa_i s_i\\
\sin\phi_i \sin\kappa_i s_i&\cos\kappa_i s_i\\
0 & 0\\
\end{matrix}
\\
\left.
\begin{matrix}
\dfrac{\cos\phi_i(\cos\kappa_i s_i -1)}{\kappa_i}\\
\dfrac{\sin\phi_i(\cos\kappa_i s_i -1)}{\kappa_i}\\
\dfrac{\sin\kappa_i s_i}{\kappa_i}\\
1
\end{matrix}\right]
\end{multline}}
\end{document}
输出: