在 \centering 之后,我不断创建新的 \begin{flushleft},我认为这非常低效,有没有另一种方法可以左对齐,而不会创建这么多这样的环境? 谢谢你!
\documentclass[a4paper,12pt]{article}
\usepackage{amsmath}
\begin{document}
\begin{flushleft}
If $f(x) = x^{n}$, then $f'(x) = nx^{n-1}$ and $f''(x) = n(n-1)x^{n-2}$.
\newline
\hfill\break
\\
The addition formula for cosine is $\cos(\alpha+\beta)$ = $\cos\alpha$$\cos\beta$ - $\sin\alpha$$\sin\beta$.
\\
The addition formula for tangent is
\newline
\\
\centering
$\tan(\alpha+\beta)$ =
$\frac{\tan\alpha+\tan\beta}{1-\tan\alpha\tan\beta}$
\newline
\\
\begin{flushleft}
The bionomial theorem states that
\newline
\\
\centering
$(a+b)^n$ = $\sum_{i=0}^{n} {n \choose i}a^ib^{n-i}$
\begin{flushleft}
for any real numbers a and b and for any integer n $\ge$ 0
\newline
\\
The modulus of a complex number z = a+bi is $\left|z\right|$ = $\sqrt{a^2+b^2}$ and the argument of z, $\varphi$ = arg z satisfies a = $\left|z\right|$cos$\varphi$ and b = $\left|z\right|$sin$\varphi$, so $\tan{\varphi}$ = $\frac{b}{a}$.
\newline
\hfill \break
\\
The general formula for the integral of a power of x is
\newline
\\
\centering
$\int x^ndx$ = $\frac{x^{n+1}}{n+1}$ + C,
\begin{flushleft}
\raggedleft so
\newline
\centering
$\int\limits_{0}^{2} x^3 dx$ = $\left[\frac{x^4}{4}\right]_0^2$ = 4
\begin{flushleft}
The determinant of a 2 $\times$ 2 matrix is given by the formula
\newline
\\
\centering
$\det$
$\begin{pmatrix}
a & b\\ c & d
\end{pmatrix}$
\end{flushleft}
\end{flushleft}
\end{flushleft}
\end{flushleft}
\end{flushleft}
\end{document}
答案1
有许多您的代码中有错误。
- 不要拆分公式
- 数学就是数学,所以
n$\ge$0
应该$n\ge 0$
\newline\\
是错的- 对于显示方程式使用
\[...\]
我在下面的代码中还做了许多其他修复。研究一下它们。
我加载了它,parskip
因为你似乎想要它。对于这样的文档,它可以是一个选择。不要将它用于真正的论文:只需使用空白行来分隔段落即可。
\documentclass[a4paper,12pt]{article}
\usepackage{amsmath}
\usepackage{parskip}
\begin{document}
If $f(x) = x^{n}$, then $f'(x) = nx^{n-1}$ and $f''(x) = n(n-1)x^{n-2}$.
The addition formula for cosine is $\cos(\alpha+\beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$.
The addition formula for tangent is
\[
\tan(\alpha+\beta) = \frac{\tan\alpha+\tan\beta}{1-\tan\alpha\tan\beta}
\]
The binomial theorem states that
\[
(a+b)^n = \sum_{i=0}^{n} \binom{n}{i}a^ib^{n-i}
\]
or any real numbers $a$ and $b$ and for any integer $n\ge 0$
The modulus of a complex number $z=a+bi$ is $\lvert z\rvert=\sqrt{a^2+b^2}$ and the argument
of $z$, $\varphi=\arg z$ satisfies $a=\lvert z\rvert\cos\varphi$ and $b=\lvert z\rvert\sin\varphi$,
so $\tan{\varphi}=\frac{b}{a}$.
The general formula for the integral of a power of $x$ is
\[
\int x^n\,dx =\frac{x^{n+1}}{n+1} + C,
\]
so
\[
\int_{0}^{2} x^3 \,dx = \left[\frac{x^4}{4}\right]_0^2 = 4
\]
The determinant of a $2\times 2$ matrix is given by the formula
\[
\det\begin{pmatrix}
a & b\\ c & d
\end{pmatrix}
=ad-bc
\]
\end{document}