如何在关闭分隔符后将方程式分成两行?

如何在关闭分隔符后将方程式分成两行?

我想把方程式分成两行,请帮帮我。

$\left.
\begin{aligned}
   f(z)&=\cos2z\\\\
   f'(z)&=-2\sin2z\\\\
   f''(z)&=-4\cos2z\\\\
   f'''(z)&=8\cos2z\\\\
   f^{IV}(z)&=16\sin2z\\\\
   f^{V}(z)&=-32\cos2z\\\\
\end{aligned}
\right\}\quad 
f^{19}(z)=\pm 2^{19} \sin(2z)  \land f^{19}(0)=\pm 2^{19} \sin(2\times 0)
$

在此处输入图片描述

答案1

使用rcasesfrommathtoolsaligned

在此处输入图片描述

\documentclass{article}
\usepackage{mathtools}

\begin{document}
\[
\begin{rcases*}
  \begin{aligned}
    f(z)     &=\cos2z\\
    f'(z)    &=-2\sin2z\\
    f''(z)   &=-4\cos2z\\
    f'''(z)  &=8\cos2z\\
    f^{IV}(z)&=16\sin2z\\
    f^{V}(z) &=-32\cos2z\\
   \end{aligned}
\end{rcases*} 
\begin{aligned}
f^{19}(z)&=\pm 2^{19} \sin(2z)  \land\\ 
f^{19}(0)&=\pm 2^{19} \sin(2\times 0)
\end{aligned}
\]
\end{document}

答案2

这也有效

$\left.
\begin{aligned}
f(z)&=\cos2z\\\\
f'(z)&=-2\sin2z\\\\
f''(z)&=-4\cos2z\\\\
f'''(z)&=8\cos2z\\\\
f^{IV}(z)&=16\sin2z\\\\
f^{V}(z)&=-32\cos2z\\\\
\end{aligned}
\right\}\quad 
\begin{aligned}
f^{19}(z)&=\pm 2^{19} \sin(2z)  \\
 f^{19}(0)&=\pm 2^{19} \sin(2\times 0)
\end{aligned}
$

在此处输入图片描述

相关内容