如何格式化文档的第二页,使其顶部间距与第一页相同?

如何格式化文档的第二页,使其顶部间距与第一页相同?

我正在格式化文档,以便数字可以排成两行。由于某种原因,第一页顶部的间距与第二页不同。我该如何解决这个问题?

代码:

\RequirePackage{fix-cm}
\documentclass[12pt]{article}
\usepackage[fontsize=10.5pt]{scrextend}
\usepackage[utf8]{inputenc}
\usepackage[english]{babel}
\usepackage{catchfile}
\usepackage{multicol}
\usepackage{tabularx} 
\usepackage{amsmath}
\usepackage{titling}
\usepackage{tikz}
\usepackage{xcolor}
\usepackage{enumitem}
\setlength{\droptitle}{-3cm}
\setlength{\topmargin}{-.5in}
\setlength{\textheight}{9in}
%\setlength{\oddsidemargin}{.125in}
\setlength{\textwidth}{6.25in}
\usepackage{titling, fancyhdr}
\newcommand{\subtitle}[1]{%
  \posttitle{%
    \par\end{center}
    \begin{center}\LARGE#1\end{center}
    \vskip0.5em}%
}
\pagestyle{fancy}

\begin{document}
\date{}
\lhead{{\LARGE Assignment of the Year Chart}} 

\vspace{5mm}
\begin{tabularx}{1\textwidth} {
   >{\raggedright\arraybackslash}X
   >{\raggedright\arraybackslash}X  } 

 $1 = 1^{845}$ & $26 = -1-8\times 4+5$ \\\\
 $2 = 1^{8} - \left(4 - 5\right)$ & $27 = 18 + 4 + 5$ \\\\
 $3 = -1 \times \left(8 \div 4 - 5\right)$ & $28 = 1 \times 8 \times 4 - 5$ \\\\
 $4 = 1 - 8 \div 4 + 5$ & $29 = 1 + 8 + 4 \times 5$ \\\\
 $5 = \left(\sqrt{1 + 8}-4\right) \times -5$ & $30 = \left(1 + 8 \div 4\right)! \times 5$ \\\\
 $6 = 1 + 8 - \sqrt{4 + 5}$ & $31 = -\left(1 - \left(8 \div 4\right)^{5}\right)$ \\\\
 $7 = 1 \times 8 - \left(.\bar{4} + .\bar{5}\right)$ & $32 = 1 \times (8 \div 4)^{5}$ \\\\
 $8 = 1 \div 8^{4 - 5}$ & $33 = 1 + (8 \div 4)^{5}$ \\\\
 $9 = 1 \times 8 - 4 + 5$ & $34 = \left(1 - 8 + 4!\right) \div .5$ \\\\
 $10 = 1 + 8 - 4 + 5$ & $35 = \left(\sqrt{1 + 8} + 4\right) \times 5$ \\\\
 $11 = 1 \times 8 + \sqrt{4 + 5}$ & $36 = -1 \times (84 - 5!)$ \\\\
 $12 = 1 + 8 + \sqrt{4 + 5}$ & $37 = 1 \times 8 \times 4 + 5$ \\\\
 $13 = -1 + 8 + \left(\sqrt{4 + 5}\right)!$ & $38 = 1 + 8 \times 4 + 5$ \\\\
 $14 = 1 \times 8 + \left(\sqrt{4 + 5}\right)!$ & $39 = -1 + 8 + \sqrt{4}^5$ \\\\
 $15 = 1 + 8 + \left(\sqrt{4 + 5}\right)!$ & $40 = 1 \times 8 + \sqrt{4}^5$ \\\\
 $16 = -1 + 8 + 4 + 5$ & $41 = \left(1 + 8\right) \times 4 + 5$ \\\\
 $17 = 18 + 4 - 5$ & $42 = \left(-1 + 8\right) \times \sqrt{4 + 5}!$ \\\\
 $18 = 1 + 8 + 4 + 5$ & $43 = 1 + 8.4 \times 5$ \\\\
 $19 = -\left(1^{8} - 4 \times 5\right)$ & $44 = -\left(.\bar{1} + .\bar{8}\right) + 45$ \\\\
 $20 = 1^{8} \times 4 \times 5$ & $45 = \left(.\bar{1} + .\bar{8}\right) \times 45$ \\\\
 $21 = .\bar{1} + .\bar{8} + 4 \times 5$ & $46 = \left(.\bar{1} + .\bar{8}\right) + 45$ \\\\
 $22 = 1 - 8 + 4! + 5$ & $47 = 18 + 4! + 5$ \\\\
 $23 = \sqrt{1 + 8} + 4 \times 5$ & $48 = \sqrt{1 + 8} + 45$ \\\\
 $24 = 1 \times 8 \times \sqrt{4 + 5}$ & $49 = 1 + 8 \times \left(\sqrt{4 + 5}\right)!$ \\\\
 $25 = \left(1 + 8 - 4\right) \times 5$ & $50 = 1 \times \left(8 + \sqrt{4}\right) \times 5$ \\\\
\end{tabularx}


\begin{tabularx}{1\textwidth} {
   >{\raggedright\arraybackslash}X
   >{\raggedright\arraybackslash}X  }

 $51 = 1 + \left(8 + \sqrt{4}\right) \times 5$ & $76 = \sqrt{1 + 8}^{4} - 5$ \\\\
 $52 = -1 + 8 + 45$ & $77 = 18 \times 4 + 5$ \\\\
 $53 = 1 \times 8 + 45$ & $78 = -1 + 84 - 5$ \\\\
 $54 = \left(1 + 8\right) \times \left(\sqrt{4 + 5}\right)!$ & $79 = -1 - \left(\left(8 - 4!\right) \times 5\right)$ \\\\
 $55 = \left(-1 + 8 + 4\right) \times 5$ & $80 = -1 \times \left(\left(8 - 4!\right) \times 5\right)$ \\\\
 $56 = 1 \times 8 \times \left(\sqrt{4} + 5\right)$ & $81 = \left(1 + 8\right) \times \left(4 + 5\right)$ \\\\
 $57 = 1 + 8 \times \left(\sqrt{4} + 5\right)$ & $82 = \sqrt{1 + 8! \div 4!} \div .5$ \\\\
 $58 = -1 + 8^{\sqrt{4}} - 5$ & $83 = -1 + 8! \div 4 \div 5!$ \\\\
 $59 = 1 \times 8^{\sqrt{4}} - 5$ & $84 = -\left(\left(1 + 8\right) \times 4 - 5!\right)$ \\\\
 $60 = \sqrt{1 + 8} \times 4 \times 5$ & $85 = 1 + 8! \div 4 \div 5!$ \\\\
 $61 = 1 + \left(8 + 4\right) \times 5$ & $86 = \sqrt{1 + 8}^{4} + 5$ \\\\
 $62 = (-1 + 8 \times 4) \div .5$ & $87 = -\left(1 + 8 \times 4 - 5!\right)$ \\\\
 $63 = 18 + 45$ & $88 = -\left(1 \times 8 \times 4 - 5!\right)$ \\\\
 $64 = 184 - 5!$ & $89 = 1 \times 84 + 5$ \\\\
 $65 = \left(1 + 8 + 4\right) \times 5$ & $90 = 1 + 84 + 5$ \\\\
 $66 = \left(1 + 8 \times 4\right) \div .5$ & $91 = 1 + \left(8 \div .\bar{4} \times 5\right)$ \\\\
 $67 = 18 \times 4 - 5$ & $92 = 184 \times .5$ \\\\
 $68 = -1 + 8^{\sqrt{4}} + 5$ & $93 = -\sqrt{1 + 8} - 4! + 5!$ \\\\
 $69 = 1 \times 8^{\sqrt{4}} + 5$ & $94 = \left(\sqrt{\sqrt{.1}}\right)^{-8} - \sqrt{4 + 5}!$ \\\\
 $70 = (18 - 4) \times 5$ & $95 = -1^{8} - 4! + 5!$ \\\\
 $71 = -1 + 8 \times (4 + 5)$ & $96 = -1^{8} \times 4! + 5!$ \\\\
 $72 = 1 \times 8 \left(4 + 5\right)$ & $97 = 1^{8} - 4! + 5!$ \\\\
 $73 = 1 + 8 \times (4 + 5)$ & $98 = -18 - 4 + 5!$ \\\\
 $74 = -\left(\sqrt{1 + 8}\right)! + \sqrt{.\bar{4}} \times 5!$ & $99 = \sqrt{1 + 8} - 4! + 5!$ \\\\
 $75 = \left(-\left(1 + 8\right)+ 4!\right) \times 5$ & $100 = -18-\sqrt{4} + 5!$ \\\\





\end{tabularx}

\end{document}

第一页第二页

相关内容