我的代码是:
{\renewcommand{\arraystretch}{1.3}
\tabcolsep=2.0\tabcolsep
\begin{table}[t!]\small
\caption{Estimated Parameters of the Aggregate Production Function:Final Specification (1 Break: 1974-1985)}
\label{t51}
\begin{tabular}{|l|>{$}c<{$}|>{$}c<{$}|}
%
\multicolumn{3}{l}{\textbf{Model: Augmentation on Composite Capital}}\\
\multicolumn{3}{l}{$Y=F\Big((A_{iK}(1+c_{iK})^t
(1+c_{iK1})^{D_1(t-t_{73})-D_2(t-t_{85})}
K^\lambda H^{1-\lambda},L\Big)$}\\[2mm]\hline
%
\textbf{Parameter } & \textbf{Estimate} & \textbf{t-statistic} \\ \hline
AK & 0.580 & 1.016 \\ \hline
AK$^{\ast\lambda}$& 0.384 & 1.623 \\ \hline
AK$^{\ast(1-\lambda)}$ & 0.195 & 0.580 \\ \hline
AL & -0.069 & -0.166 \\ \hline
BK & -0.090 & -1.259 \\ \hline
BL & 0.085 & 0.819 \\ \hline
BLK & 0.057 & 1.017 \\ \hline
CKCAN & 0.034 & 1.269 \\ \hline
CKFRA & 0.062 & 1.849 \\ \hline
CKGER & 0.067 & 2.056 \\ \hline
CKITA & 0.069 & 1.853 \\ \hline
CKJAP & 0.077 & 1.807 \\ \hline
CKUK & 0.061 & 2.068 \\ \hline
CKUS & 0.045 & 1.966 \\ \hline
CK1CAN & -0.008 & -0.761 \\ \hline
CK1FRA & -0.012 & -1.079 \\ \hline
CK1GER & -0.013 & -1.038 \\ \hline
CK1ITA & -0.027 & -1.776 \\ \hline
CK1JAP & -0.045 & -1.973 \\ \hline
CK1UK & -0.027 & -1.892 \\ \hline
CK1US & -0.019 & -1.480 \\ \hline
$\lambda$ & 0.663 & 2.629 \\ \hline
$R^2$ & 0.806 & \\ \hline
D.W. & 1.801 & \\ \hline
\end{tabular}\smallskip
\raggedright
{\small Notes}
\begin{enumerate}[itemsep=0pt,before={\fontsize{9pt}{9pt}\selectfont}]
\item
The final specification is in the first-differenced form.
\item
$D_1$ takes the value of 1 if
$\mbox{year}\ge 1973$ and 0 otherwise; $D_2$ takes the value of 1 if
$\mbox{year}\ge 1985$ and 0 otherwise.
\end{enumerate}
\end{table}
}
我想让所有经期都保持一致,避免负数影响数字。有什么办法吗?
谢谢你!
蒂芙尼
答案1
siunitx
你可以使用和列类型来获得你想要的。我用的环境替换S
了最后一个,以使注释适合表格宽度:enumerate
tablenotes
threeparttable
\documentclass[10pt]{amsart}
\usepackage{siunitx}
\usepackage{threeparttable}
\begin{document}
\begin{table}[t!]\renewcommand{\arraystretch}{1.3}
\tabcolsep=2.0\tabcolsep
\sisetup{table-format=-1.3, table-number-alignment=center}
\small
\begin{threeparttable}
\caption{Estimated Parameters of the Aggregate Production Function:Final Specification (1 Break: 1974-1985)}
\label{t51}
\begin{tabular}{|l|S|S|}
%
\multicolumn{3}{l}{\textbf{Model: Augmentation on Composite Capital}}\\
\multicolumn{3}{l}{$Y=F\Big((A_{iK}(1+c_{iK})^t
(1+c_{iK1})^{D_1(t-t_{73})-D_2(t-t_{85})}
K^\lambda H^{1-\lambda},L\Big)$}\\[2mm]\hline
%
\textbf{Parameter } & {\textbf{Estimate}} &{ \textbf{t-statistic}} \\ \hline
AK & 0.580 & 1.016 \\ \hline
AK$^{\ast\lambda}$& 0.384 & 1.623 \\ \hline
AK$^{\ast(1-\lambda)}$ & 0.195 & 0.580 \\ \hline
AL & -0.069 & -0.166 \\ \hline
BK & -0.090 & -1.259 \\ \hline
BL & 0.085 & 0.819 \\ \hline
BLK & 0.057 & 1.017 \\ \hline
CKCAN & 0.034 & 1.269 \\ \hline
CKFRA & 0.062 & 1.849 \\ \hline
CKGER & 0.067 & 2.056 \\ \hline
CKITA & 0.069 & 1.853 \\ \hline
CKJAP & 0.077 & 1.807 \\ \hline
CKUK & 0.061 & 2.068 \\ \hline
CKUS & 0.045 & 1.966 \\ \hline
CK1CAN & -0.008 & -0.761 \\ \hline
CK1FRA & -0.012 & -1.079 \\ \hline
CK1GER & -0.013 & -1.038 \\ \hline
CK1ITA & -0.027 & -1.776 \\ \hline
CK1JAP & -0.045 & -1.973 \\ \hline
CK1UK & -0.027 & -1.892 \\ \hline
CK1US & -0.019 & -1.480 \\ \hline
$\lambda$ & 0.663 & 2.629 \\ \hline
$R^2$ & 0.806 & \\ \hline
D.W. & 1.801 & \\ \hline
\end{tabular}\smallskip
\begin{tablenotes}[flushleft, online]
\item[{Notes}]
\item[(1)] The final specification is in the first-differenced form.
\item[(2)] $D_1$ takes the value of 1 if
$\mbox{year}\ge 1973$ and 0 otherwise; $D_2$ takes the value of 1 if
$\mbox{year}\ge 1985$ and 0 otherwise.
\end{tablenotes}
\end{threeparttable}
\end{table}
\end{document}