快速提问——我正在用 LaTeX 编写证明,但我的代码无法编译 :(。我将有问题的区域缩小到前面带有 % 符号的部分,但似乎找不到错误。请帮忙!
\begin{align*}
\frac{dr}{dt}&=r(1-r^2)\\
\int \frac{dr}{r(1-r)(1+r)}&=\int dt\\
\int_{r_0}^{r_1} \frac{dr}{r(1-r)(1+r)}&=\int_0^{2\pi} dt\\
\int_{r_0}^{r_1}\frac1r+\frac{\frac12}{1-r}-\frac{\frac12}{1+r}dr&=t\bigg|_0^{2\pi}\\
\ln|r|-\frac12\ln|1-r|-\frac12\ln|1+r|\bigg|_{r_0}^{r_1}&=2\pi\\
\ln\bigg|\frac{r}{\sqrt{1-r^2}}\bigg|\bigg|_{r_0}^{r_1}&=2\pi\\ \ln\bigg|\frac{r}{\sqrt{1-r^2}}\bigg|-\bigg|\frac{r_0}{\sqrt{1-r_0^2}}\bigg|&=2\pi\\
\ln\left(\frac{r_1\sqrt{1-r_0^2}}{r_0\sqrt{1-r_1^2}}\right)&=2\pi\\
\frac{r_1}{\sqrt{1-r_1^2}}&=\frac{r_0}{\sqrt{1-r_0^2}}e^{2\pi}\\
%\left(\frac{r_1}{\sqrt{1-r_1^2}}\right)^2&=(\frac{r_0}{\sqrt{1-r_0^2}}(e^{2\pi}))^2\\
%\frac{r_1^2}{1-r_1^2}&=\frac{r_0^2}{1-r_0^2}\left(e^{4\pi}\right)=A\\
%r_1^2 &= (1-r_1^2)A\\
%(1+A) r_1^2 &=A\\
%r_1&=\sqrt{\frac{A}{1+A}}\\
%r_1&=\sqrt{\frac{r_0^2 e^{4\pi}}{1-r_0^2+r_0^2e^{4\pi}}}\\
r_{n+1}&=\frac{1}{\sqrt{{r_n^{-2}e^{-4\pi}-e^{-4\pi}+1}}}\\
\mathcal{P}(r_n)&=\frac{1}{\sqrt{e^{-4\pi}(r_n^{-2}-1)+1}}\\
\end{align*}
谢谢你!
答案1
事实证明,代码是在下一页编译的,而我仅将缩放设置为当前页面,抱歉 :)。很高兴它起作用了,谢谢大家帮助我。