以下代码创建了一个跨两页的表格。但是,我遇到了三个问题:
- 表格无法正确放入页面,并且对齐方式很奇怪。我之前使用过
tabularx
,该表格可以很好地放入(在给定的页面上,但无法跨越到下一页)。虽然@Werner 之前给我重定向的帖子提供了一些有用的提示,但我遇到了这些问题。有没有简单的方法可以解决这个问题?为了说明我想要实现的目标,请参见下面的图片示例 1(使用构建tabularx
),其中表格正确居中。 - 同样,行现在也没有对齐,并且行与行之间的间隙不均匀。同样,示例 1 不会遇到这样的问题。
- 这是一个小问题,但如示例 1 所示,第一行比下面的行更粗。有没有办法用 longtable 来实现这一点(即下面的代码)?
话虽如此,我还是要感谢 @leandriis 早些时候试图帮助解决类似的问题。尽管 @leandriis 善意地建议我应该使用xltabular
,但我找不到很多有用的示例让我可以使用这个包构建表格。@leandriis,你认为上述三点可以用来解决吗xltabular
?
在此先感谢您的任何建议!
以下是代码:
\documentclass[final,3p,times,12pt]{elsarticle}
\usepackage{caption}
\captionsetup{font=large}
\usepackage{array}
\newcolumntype{M}[1]{>{\raggedright}m{#1}}
\usepackage{booktabs}
\usepackage{makecell}
\usepackage{bbm}
\usepackage{longtable}
\begin{document}
\begin{longtable}{@{}M{8em}ccccccc@{}}
\caption{Coronavirus rates as a logarithmic function of social distancing}\\[-1.5ex]
\multicolumn{7}{@{}p{\linewidth}@{}}{\footnotesize Something something something something something something something something something something something something something something something something something something something something something something something something something something something something something. }
\\ [8ex]
\toprule
& \multicolumn{7}{c}{Dependent Variable: $\mathbbm{1}${(Death$_{j,t}$)}} \\
& (1) & (2) & (3) & (4) & (5) & (6)& (7) \\
\midrule
\endfirsthead
\multicolumn{7}{@{}l@{}}{continues from the previous page}\\
\midrule
& \multicolumn{7}{c}{Dependent Variable: $\mathbbm{1}${(Death$_{j,t}$)}} \\
& (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\midrule
\endhead
\midrule
\multicolumn{7}{@{}r@{}}{continues on the next page}
\endfoot
\bottomrule
\endlastfoot
$\mathbbm{1}${(Not Social Distancing$_{j,t}$)}
& 0.322& 0.278& 0.276 & 0.387*** & 0.304*** & 0.305*** & 0.381*** \\
& (0.3333) & (0.2232) & (0.2323) & (0.333) & (0.334) & (0.334) & (0.333) \\
$\mathbbm{1}${(Pnst Type$_{j,t}$)} & & & & & 0.331*** & 0.331*** & \\
& & & & & (0.3359) & (0.3359) & \\
$\mathbbm{1}${(Long variable name$_{j,t}$)} & & & & & -0.3315 & -0.3313 & \\
& & & & & (0.3313) & (0.3313) & \\
$\mathbbm{1}${(Intense 3$_{j,t}$)} & & & & & 0.07** & 0.08** & 0.06* \\
& & & & & (0.000) & (0.000) & (0.000) \\
$\mathbbm{1}${(Insurance$_{j,t}$)}& & & & & 0.133 & 0.149 & 0.114 \\
& & & & & (0.090) & (0.090) & (0.091) \\
$\mathbbm{1}${(Gender$_{j,t}$)} & & & & & 0.3*** & 0.3*** & 0.07** \\
& & & & & (0.021) & (0.021) & (0.067) \\
$\mathbbm{1}${(Facility P$_{j,t}$)} & & & & & 0.006 & 0.005 & 0.025** \\
& & & & & (0.008) & (0.008) & (0.033) \\
$\mathbbm{1}${(Att$_{j,t}$)} & & & & & 0.3345 & 0.0234 & 0.0215 \\
& & & & & (0.038) & (0.042) & (0.333) \\
$\mathbbm{1}${(Ptt$_{j,t}$)}& & & & & 0.0988 & 0.0849 & 0.0873 \\
& & & & & (0.153) & (0.151) & (0.203) \\
$\mathbbm{1}${(Variable 3$_{[1,5],}$ $_{j,t}$)} & & & & & 0.315 & 0.327 & 0.229 \\
& & & & & (0.206) & (0.202) & (0.200) \\
$\mathbbm{1}${(Variable 3$_{(5,11],}$ $_{j,t}$)} & & & & & -0.336 & 0.025 & 0.007 \\
& & & & & (0.043) & (0.042) & (0.023) \\
$\mathbbm{1}${(Variable 3$_{(11,20],}$ $_{j,t}$)}& & & & & -0.43** & -0.33** & -0.40** \\
& & & & & (0.178) & (0.175) & (0.185) \\
$\mathbbm{1}${(Variable 3$_{(20,35],}$ $_{j,t}$)}& & & & & 1.203** & 1.116** & 1.066* \\
& & & & & (0.534) & (0.538) & (0.565) \\
$\mathbbm{1}${(Variable 3$_{>35},$ $_{j,t}$)} & & & & & 0.020 & 0.030 & 0.003 \\
& & & & & (0.0420) & (0.0433) & (0.0219) \\
$\mathbbm{1}${(Age Group 1$_{j,t}$)} & & & & & 0.291*** & 0.218** & 0.213** \\
& & & & & (0.119) & (0.116) & (0.0846) \\
$\mathbbm{1}${(Age Group 2$_{j,t}$)} & & & & & 0.3392 & 0.0823 & 0.0702 \\
& & & & & (0.337) & (0.337) & (0.117) \\
$\mathbbm{1}${(Age Group 3$_{j,t}$)} & & & & & 0.0250 & 0.0207 & 0.3379 \\
& & & & & (0.021) & (0.021) & (0.023) \\
$\mathbbm{1}${(Age Group 4$_{j,t}$)} & & & & & 0.0621 & -0.334 & -0.3355 \\
& & & & & (0.120) & (0.339) & (0.121) \\
$\mathbbm{1}${(Age Group 5$_{j,t}$)} & & & & & 0.137 & 0.355** & 0.123 \\
& & & & & (0.160) & (0.157) & (0.166) \\
\hline
\midrule
\textbf{Fixed Effects} \\
Time &X&X&X&X&X&X&X \\
Country &&X&X&&X&X & \\
Time$\times$Country &&&X&&&X & \\
Location &&&&X&&&X \\
\midrule
Observations & 16,175 & 16,175 & 16,158 & 16,059 & 15,041 & 15,041 & 14,941 \\
R-squared & 0.095 & 0.144 & 0.193 & 0.353 & 0.171 & 0.205 & 0.357 \\ \hline
\end{longtable}
\end{document}
修改: 根据@Bernard的建议,我修改了代码:
\documentclass{article}
\usepackage{caption}
\captionsetup{font=large}
\usepackage{array}
\newcolumntype{M}[1]{>{\raggedright}m{#1}}
\usepackage{booktabs}
\usepackage{makecell}
\usepackage{bbm}
\usepackage{xltabular}
\usepackage{pdflscape}
\begin{document}
\begin{landscape}
\vspace*{-3cm}
\begin{xltabular}[l]{0.55\linewidth}{@{}X*8{c}@{}}
\caption{Coronavirus rates as a logarithmic function of social distancing}\\[-1.5ex]
\multicolumn{7}{@{}p{\linewidth}@{}}{\footnotesize Something something something something something something something something something something something something something something something something something something something something something something something something something something something something something. } \\ [8ex]
\toprule
& \multicolumn{8}{c}{Dependent Variable: $\mathbbm{1}${(Death$_{j,t}$)}} \\
& (1) & (2) & (3) & (4) & (5) & (6)& (7) \\
\midrule
\endfirsthead
\multicolumn{8}{@{}l@{}}{continues from the previous page}\\
\midrule
& \multicolumn{8}{c}{Dependent Variable: $\mathbbm{1}${(Death$_{j,t}$)}} \\
& (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\midrule
\endhead
\midrule
\multicolumn{8}{@{}r@{}}{continues on the next page}
\endfoot
\bottomrule
\endlastfoot
$\mathbbm{1}${(Not Social Distancing$_{j,t}$)}
& 0.322& 0.278& 0.276 & 0.387*** & 0.304*** & 0.305*** & 0.381*** \\
& (0.3333) & (0.2232) & (0.2323) & (0.333) & (0.334) & (0.334) & (0.333) \\
$\mathbbm{1}${(Pnst Type$_{j,t}$)} & & & & & 0.331*** & 0.331*** & \\
& & & & & (0.3359) & (0.3359) & \\
$\mathbbm{1}${(Long variable name$_{j,t}$)} & & & & & -0.3315 & -0.3313 & \\
& & & & & (0.3313) & (0.3313) & \\
$\mathbbm{1}${(Intense 3$_{j,t}$)} & & & & & 0.07** & 0.08** & 0.06* \\
& & & & & (0.000) & (0.000) & (0.000) \\
$\mathbbm{1}${(Insurance$_{j,t}$)}& & & & & 0.133 & 0.149 & 0.114 \\
& & & & & (0.090) & (0.090) & (0.091) \\
$\mathbbm{1}${(Gender$_{j,t}$)} & & & & & 0.3*** & 0.3*** & 0.07** \\
& & & & & (0.021) & (0.021) & (0.067) \\
$\mathbbm{1}${(Facility P$_{j,t}$)} & & & & & 0.006 & 0.005 & 0.025** \\
& & & & & (0.008) & (0.008) & (0.033) \\
$\mathbbm{1}${(Att$_{j,t}$)} & & & & & 0.3345 & 0.0234 & 0.0215 \\
& & & & & (0.038) & (0.042) & (0.333) \\
$\mathbbm{1}${(Ptt$_{j,t}$)}& & & & & 0.0988 & 0.0849 & 0.0873 \\
& & & & & (0.153) & (0.151) & (0.203) \\
$\mathbbm{1}${(Variable 3$_{[1,5],}$ $_{j,t}$)} & & & & & 0.315 & 0.327 & 0.229 \\
& & & & & (0.206) & (0.202) & (0.200) \\
$\mathbbm{1}${(Variable 3$_{(5,11],}$ $_{j,t}$)} & & & & & -0.336 & 0.025 & 0.007 \\
& & & & & (0.043) & (0.042) & (0.023) \\
$\mathbbm{1}${(Variable 3$_{(11,20],}$ $_{j,t}$)}& & & & & -0.43** & -0.33** & -0.40** \\
& & & & & (0.178) & (0.175) & (0.185) \\
$\mathbbm{1}${(Variable 3$_{(20,35],}$ $_{j,t}$)}& & & & & 1.203** & 1.116** & 1.066* \\
& & & & & (0.534) & (0.538) & (0.565) \\
$\mathbbm{1}${(Variable 3$_{>35},$ $_{j,t}$)} & & & & & 0.020 & 0.030 & 0.003 \\
& & & & & (0.0420) & (0.0433) & (0.0219) \\
$\mathbbm{1}${(Age Group 1$_{j,t}$)} & & & & & 0.291*** & 0.218** & 0.213** \\
& & & & & (0.119) & (0.116) & (0.0846) \\
$\mathbbm{1}${(Age Group 2$_{j,t}$)} & & & & & 0.3392 & 0.0823 & 0.0702 \\
& & & & & (0.337) & (0.337) & (0.117) \\
$\mathbbm{1}${(Age Group 3$_{j,t}$)} & & & & & 0.0250 & 0.0207 & 0.3379 \\
& & & & & (0.021) & (0.021) & (0.023) \\
$\mathbbm{1}${(Age Group 4$_{j,t}$)} & & & & & 0.0621 & -0.334 & -0.3355 \\
& & & & & (0.120) & (0.339) & (0.121) \\
$\mathbbm{1}${(Age Group 5$_{j,t}$)} & & & & & 0.137 & 0.355** & 0.123 \\
& & & & & (0.160) & (0.157) & (0.166) \\
\hline
\midrule
\textbf{Fixed Effects} \\
Time &X&X&X&X&X&X&X \\
Country &&X&X&&X&X & \\
Time$\times$Country &&&X&&&X & \\
Location &&&&X&&&X \\
\midrule
Observations & 16,175 & 16,175 & 16,158 & 16,059 & 15,041 & 15,041 & 14,941 \\
R-squared & 0.095 & 0.144 & 0.193 & 0.353 & 0.171 & 0.205 & 0.357 \\ \hline
\end{xltabular}
\end{landscape}
\end{document}
除了每列的列长度不一样(即,第 5、6、7 列之间的间隙更大)之外,此代码运行良好。
答案1
- 非常。非常实际的表格......
- 我将使用
S
列作为第 2 至第 8 列 - 计算
\tabcolsep
左至 LaTeX - 适用于桌面
longtable
设置\setlength\LTleft{0pt}\setlength\LTright{0pt}
- 将表格的字体大小减小到
\small
:
\documentclass[final,3p,times,12pt]{elsarticle}
\usepackage{caption}
\captionsetup{font=small}
\usepackage{array}
\newcolumntype{M}[1]{>{\raggedright}m{#1}}
\usepackage{booktabs}
\usepackage{makecell}
\usepackage{bbm}
\usepackage{longtable}
\usepackage{siunitx}
\begin{document}
\begingroup
\small
\sisetup{table-format=1.4,
table-space-text-pre=(,
table-space-text-post=***,
table-align-text-post=false,
input-symbols=()
}
\setlength\LTleft{0pt}
\setlength\LTright{0pt}
\setlength\tabcolsep{0pt}
\begin{longtable}{@{\extracolsep{\fill}} M{8em}
*{7}{S}}
\caption[Coronavirus rates as a logarithmic function of social distancing]
{Coronavirus rates as a logarithmic function of social distancing\\[1ex]
\footnotesize
Something something something something something something something something something something something something something something something something something something something something something something something something something something something something something. }
\label{tab:čongtable-covit-19} \\
\toprule
\multicolumn{1}{c}{}
& \multicolumn{7}{c}{Dependent Variable: $\mathbbm{1}${(Death$_{j,t}$)}} \\
\cmidrule{2-8}
\multicolumn{1}{c}{}
& {(1)} & {(2)} & {(3)} & {(4)} & {(5)} & {(6)} & {(7)} \\
\midrule
\endfirsthead
\caption[]{Coronavirus rates as a logarithmic function of social distancing (cont.)} \\
\midrule
\multicolumn{1}{c}{}
& \multicolumn{7}{c}{Dependent Variable: $\mathbbm{1}${(Death$_{j,t}$)}} \\
\cmidrule{2-8}
\multicolumn{1}{c}{}
& {(1)} & {(2)} & {(3)} & {(4)} & {(5)} & {(6)} & {(7)} \\
\midrule
\endhead
\midrule
\multicolumn{7}{@{}r@{}}{\footnotesize\textit{continues on the next page}}
\endfoot
\bottomrule
\endlastfoot
$\mathbbm{1}$ (Not Social Distancing$_{j,t}$)
& 0.322 & 0.278 & 0.276 & 0.387*** & 0.304*** & 0.305*** & 0.381*** \\
& (0.3333) & (0.2232) & (0.2323) & (0.333) & (0.334) & (0.334) & (0.333) \\
$\mathbbm{1}$ (Pnst Type$_{j,t}$)
& & & & & 0.331*** & 0.331*** & \\
& & & & & (0.3359) & (0.3359) & \\
$\mathbbm{1}$ (Long variable name$_{j,t}$)
& & & & & -0.3315 & -0.3313 & \\
& & & & & (0.3313) & (0.3313) & \\
$\mathbbm{1}$ (Intense 3$_{j,t}$)
& & & & & 0.07** & 0.08** & 0.06* \\
& & & & & (0.000) & (0.000) & (0.000) \\
$\mathbbm{1}$ (Insurance$_{j,t}$)
& & & & & 0.133 & 0.149 & 0.114 \\
& & & & & (0.090) & (0.090) & (0.091) \\
$\mathbbm{1}$ (Gender$_{j,t}$)
& & & & & 0.3*** & 0.3*** & 0.07** \\
& & & & & (0.021) & (0.021) & (0.067) \\
$\mathbbm{1}$ (Facility P$_{j,t}$)
& & & & & 0.006 & 0.005 & 0.025** \\
& & & & & (0.008) & (0.008) & (0.033) \\
$\mathbbm{1}$ (Att$_{j,t}$)
& & & & & 0.3345 & 0.0234 & 0.0215 \\
& & & & & (0.038) & (0.042) & (0.333) \\
$\mathbbm{1}$ (Ptt$_{j,t}$)
& & & & & 0.0988 & 0.0849 & 0.0873 \\
& & & & & (0.153) & (0.151) & (0.203) \\
$\mathbbm{1}$ (Variable 3$_{[1,5],}$ $_{j,t}$)
& & & & & 0.315 & 0.327 & 0.229 \\
& & & & & (0.206) & (0.202) & (0.200) \\
$\mathbbm{1}$ (Variable 3$_{(5,11],}$ $_{j,t}$)
& & & & & -0.336 & 0.025 & 0.007 \\
& & & & & (0.043) & (0.042) & (0.023) \\
$\mathbbm{1}$ (Variable 3$_{(11,20],}$ $_{j,t}$)
& & & & & -0.43** & -0.33** & -0.40** \\
& & & & & (0.178) & (0.175) & (0.185) \\
$\mathbbm{1}$ (Variable 3$_{(20,35],}$ $_{j,t}$)
& & & & & 1.203** & 1.116** & 1.066* \\
& & & & & (0.534) & (0.538) & (0.565) \\
$\mathbbm{1}$ (Variable 3$_{>35},$ $_{j,t}$)
& & & & & 0.020 & 0.030 & 0.003 \\
& & & & & (0.0420) & (0.0433) & (0.0219) \\
$\mathbbm{1}$ (Age Group 1$_{j,t}$)
& & & & & 0.291*** & 0.218** & 0.213** \\
& & & & & (0.119) & (0.116) & (0.0846) \\
$\mathbbm{1}$ (Age Group 2$_{j,t}$)
& & & & & 0.3392 & 0.0823 & 0.0702 \\
& & & & & (0.337) & (0.337) & (0.117) \\
$\mathbbm{1}$ (Age Group 3$_{j,t}$)
& & & & & 0.0250 & 0.0207 & 0.3379 \\
& & & & & (0.021) & (0.021) & (0.023) \\
$\mathbbm{1}$ (Age Group 4$_{j,t}$)
& & & & & 0.0621 & -0.334 & -0.3355 \\
& & & & & (0.120) & (0.339) & (0.121) \\
$\mathbbm{1}$ (Age Group 5$_{j,t}$)
& & & & & 0.137 & 0.355** & 0.123 \\
& & & & & (0.160) & (0.157) & (0.166) \\
\midrule
\textbf{Fixed Effects} \\
Time
& {X} & {X} & {X} & {X} & {X} & {X} & {X} \\
Country
& & {X} & {X} & & {X} & {X} & {X} \\
Time$\times$Country
& & & {X} & & & {X} & \\
Location
& & & & {X} & & & {X} \\
\midrule
Observations
& {16,175} & {16,175} & {16,158} & {16,059} & {15,041} & {15,041} & {14,941} \\
R-squared
& 0.095 & 0.144 & 0.193 & 0.353 & 0.171 & 0.205 & 0.357 \\
\end{longtable}
\endgroup
\end{document}
附录
不清楚$\mathbbm{1}$
第一列内容中单元格之前的含义。我会将它们连同单元格内容周围的括号一起删除。这样可以为表格获得更多空间。此外,我还会在表格第一部分的每个第二行之间引入小的垂直空间。在表格的第二部分中,请考虑您在以下评论中提出的问题:
\documentclass[final,3p,times,12pt]{elsarticle}
\usepackage{caption}
\captionsetup{font=small}
\usepackage{booktabs, longtable}
\newcommand\mcc[1]{\multicolumn{1}{c}{#1}}
\usepackage{bbm}
\usepackage{siunitx}
\begin{document}
\begingroup
\footnotesize
\sisetup{table-format=1.4,
table-space-text-pre=(,
table-space-text-post=***,
table-align-text-post=false,
input-symbols=(),
table-alignment=right
}
\setlength\LTleft{0pt}
\setlength\LTright{0pt}
\setlength\tabcolsep{0pt}
\begin{longtable}{@{\extracolsep{\fill}} l
*{7}{S}}
\caption[Coronavirus rates as a logarithmic function of social distancing]
{Coronavirus rates as a logarithmic function of social distancing\\[1ex]
\footnotesize
Something something something something something something something something something something something something something something something something something something something something something something something something something something something something something. }
\label{tab:čongtable-covit-19} \\
\toprule
\multicolumn{1}{c}{}
& \multicolumn{7}{c}{Dependent Variable: $\mathbbm{1}${(Death$_{j,t}$)}} \\
\cmidrule{2-8}
\multicolumn{1}{c}{}
& \mcc{(1)} & \mcc{(2)} & \mcc{(3)} & \mcc{(4)} & \mcc{(5)} & \mcc{(6)} & \mcc{(7)} \\
\midrule
\endfirsthead
\caption[]{Coronavirus rates as a logarithmic function of social distancing (cont.)} \\
\midrule
\multicolumn{1}{c}{}
& \multicolumn{7}{c}{Dependent Variable: $\mathbbm{1}${(Death$_{j,t}$)}} \\
\cmidrule{2-8}
\multicolumn{1}{c}{}
& \mcc{(1)} & \mcc{(2)} & \mcc{(3)} & \mcc{(4)} & \mcc{(5)} & \mcc{(6)} & \mcc{(7)} \\
\midrule
\endhead
\midrule
\multicolumn{8}{@{}r@{}}{\footnotesize\textit{continues on the next page}}
\endfoot
\bottomrule
\endlastfoot
Not Social Distancing$_{j,t}$
& 0.322 & 0.278 & 0.276 & 0.387*** & 0.304*** & 0.305*** & 0.381*** \\
& (0.3333) & (0.2232) & (0.2323) & (0.333) & (0.334) & (0.334) & (0.333) \\
\addlinespace
Pnst Type$_{j,t}$
& & & & & 0.331*** & 0.331*** & \\
& & & & & (0.3359) & (0.3359) & \\
\addlinespace
Long variable name$_{j,t}$
& & & & & -0.3315 & -0.3313 & \\
& & & & & (0.3313) & (0.3313) & \\
\addlinespace
Intense 3$_{j,t}$
& & & & & 0.07** & 0.08** & 0.06* \\
& & & & & (0.000) & (0.000) & (0.000) \\
\addlinespace
Insurance$_{j,t}$
& & & & & 0.133 & 0.149 & 0.114 \\
& & & & & (0.090) & (0.090) & (0.091) \\
\addlinespace
Gender$_{j,t}$
& & & & & 0.3*** & 0.3*** & 0.07** \\
& & & & & (0.021) & (0.021) & (0.067) \\
\addlinespace
Facility P$_{j,t}$
& & & & & 0.006 & 0.005 & 0.025** \\
& & & & & (0.008) & (0.008) & (0.033) \\
\addlinespace
Att$_{j,t}$
& & & & & 0.3345 & 0.0234 & 0.0215 \\
& & & & & (0.038) & (0.042) & (0.333) \\
\addlinespace
Ptt$_{j,t}$
& & & & & 0.0988 & 0.0849 & 0.0873 \\
& & & & & (0.153) & (0.151) & (0.203) \\
\addlinespace
Variable 3$_{[1,5]\;j,t}$
& & & & & 0.315 & 0.327 & 0.229 \\
& & & & & (0.206) & (0.202) & (0.200) \\
\addlinespace
Variable 3$_{(5,11],\;j,t)}$
& & & & & -0.336 & 0.025 & 0.007 \\
& & & & & (0.043) & (0.042) & (0.023) \\
\addlinespace
Variable 3$_{(11,20],\;j,t)}$
& & & & & -0.43** & -0.33** & -0.40** \\
& & & & & (0.178) & (0.175) & (0.185) \\
\addlinespace
Variable 3$_{(20,35],\;j,t)}$
& & & & & 1.203** & 1.116** & 1.066* \\
& & & & & (0.534) & (0.538) & (0.565) \\
\addlinespace
Variable 3$_{>35,\;j,t}$
& & & & & 0.020 & 0.030 & 0.003 \\
& & & & & (0.0420) & (0.0433) & (0.0219) \\
\addlinespace
Age Group 1$_{j,t}$
& & & & & 0.291*** & 0.218** & 0.213** \\
& & & & & (0.119) & (0.116) & (0.0846) \\
\addlinespace
Age Group 2$_{j,t}$
& & & & & 0.3392 & 0.0823 & 0.0702 \\
& & & & & (0.337) & (0.337) & (0.117) \\
\addlinespace
Age Group 3$_{j,t}$
& & & & & 0.0250 & 0.0207 & 0.3379 \\
& & & & & (0.021) & (0.021) & (0.023) \\
\addlinespace
Age Group 4$_{j,t}$
& & & & & 0.0621 & -0.334 & -0.3355 \\
& & & & & (0.120) & (0.339) & (0.121) \\
\addlinespace
Age Group 5$_{j,t}$
& & & & & 0.137 & 0.355** & 0.123 \\
& & & & & (0.160) & (0.157) & (0.166) \\
\midrule
\textbf{Fixed Effects} \\
Time
& {X} & {X} & {X} & {X} & {X} & {X} & {X} \\
Country
& & {X} & {X} & & {X} & {X} & {X} \\
Time$\times$Country
& & & {X} & & & {X} & \\
Location
& & & & {X} & & & {X} \\
\midrule
Observations
& {16,175} & {16,175} & {16,158} & {16,059} & {15,041} & {15,041} & {14,941} \\
R-squared
& {0.095} & {0.144} & {0.193} & {0.353} & {0.171} & {0.205} & {0.357} \\
\end{longtable}
\endgroup
\end{document}
编辑:
S
列在包中定义siunitx
。它们用于将数字在小数点处对齐。- 在设置中定义列的特征
S
如下:- 带有 的数字的大小
tabular-format=<num. of inteders>.>num of decimal digits
。 - 数字前的附加空格为
table-space-text-pre=(
。 - 数字后面带有 的附加空格
table-space-text-pre=***
。 - 将括号后和
*
数字后用对齐table-align-text-post=false
。 - 输入符号,这些符号被视为数字形式(
)
,)
,用于表格中)input-symbols=()
- 用于右对齐
S
列中的文本table-alignment=right
(根据我的测试,我会省略此选项并使用默认设置,即center
。在这种情况下,您还可以删除\mcc
命令的定义及其在表头中的使用,如第一个示例中所做的那样)。
- 带有 的数字的大小
- 要将单元格的内容放在第一列,只需用 替换
M
列l
,但这样您需要减小列大小,以便表格可以适合文本宽度。