在 parbox 中为新行添加边距

在 parbox 中为新行添加边距

我的桌子

\begin{table*}[!t]
\ra{1.3}
\caption{Well-known scheduling performance measures.}\label{tab:objectives}
\centering
\resizebox{\textwidth}{!}{\begin{tabular}{@{}llll@{}}
    \toprule
    \textbf{Objective function} & \textbf{Symbol} & \textbf{Formulation} & \textbf{Interpretation} \\
    \midrule
    Makespan & $C_{\max}$ & $\max\limits_{\forall i \in 1,\dots,n}\{C_i\}$ & \parbox[t]{9cm}{The maximal completion time between all operations of all jobs} \\  
    Maximum workload    & $W_{M}$       & $\max\limits_{\forall k \in 1,\dots,m}\{\sum_{i=1}^{|B_k|} p_{ik}\}$ & \parbox[t]{9cm}{The machine with most working time; appropriate to balance the workload among machines} \\
    Total workload      & $W_{T}$       & $\sum_{i=1}^{o} p_{i\kappa(i)}$ & \parbox[t]{9cm}{Sum of the working time on all machines; appropriate to reduce the total amount of processing time taken to produce all operations} \\ 
    Total tardiness     & $T$           & $\max\limits_{\forall i \in 1,\dots,n}\{0, C_i - d_i \}$ & \parbox[t]{9cm}{Positive difference between the completion time and the due date of all jobs; appropriate when early jobs bring no reward} \\ 
    Mean tardiness     & $\bar T$       & $\max\limits_{\forall i \in 1,\dots,n}\{0, C_i - d_i \}$ & \parbox[t]{9cm}{Positive difference between the completion time and the due date of all jobs; appropriate when early jobs bring no reward} \\ 
    Maximum lateness    & $L_{\max}$    & $\max\limits_{\forall i \in 1,\dots,n}\{C_i - d_i\}$ & \parbox[t]{9cm}{Maximal difference between the completion time and the due date of all jobs; appropriate when there is a positive reward for completing a job early} \\
    \bottomrule
\end{tabular}}
\end{table*} 

看起来像这样

在此处输入图片描述

我的问题是如何为里面的每个新点赞添加边距\parbox[t]{9cm}{}。像这样

在此处输入图片描述

答案1

以下是使用的两个版本的表格tabularx

在此处输入图片描述

\documentclass{article}
\usepackage{geometry}
\usepackage{booktabs}
\usepackage{tabularx}
\usepackage{array}

\newcolumntype{Y}{>{\everypar{\hangindent=6pt}\arraybackslash}X}

\begin{document}
\begin{table*}[!t]
\caption{Well-known scheduling performance measures.}\label{tab:objectives}
\centering
\begin{tabularx}{\textwidth}{@{}lllY@{}}
    \toprule
    \textbf{Objective function} & \textbf{Symbol} & \textbf{Formulation} & \textbf{Interpretation} \\
    \midrule
    Makespan & $C_{\max}$ & $\max\limits_{\forall i \in 1,\dots,n}\{C_i\}$ & The maximal completion time between all operations of all jobs \\  
    Maximum workload    & $W_{M}$       & $\max\limits_{\forall k \in 1,\dots,m}\{\sum_{i=1}^{|B_k|} p_{ik}\}$ & The machine with most working time; appropriate to balance the workload among machines \\
    Total workload      & $W_{T}$       & $\sum_{i=1}^{o} p_{i\kappa(i)}$ & Sum of the working time on all machines; appropriate to reduce the total amount of processing time taken to produce all operations \\ 
    Total tardiness     & $T$           & $\max\limits_{\forall i \in 1,\dots,n}\{0, C_i - d_i \}$ & Positive difference between the completion time and the due date of all jobs; appropriate when early jobs bring no reward \\ 
    Mean tardiness     & $\bar T$       & $\max\limits_{\forall i \in 1,\dots,n}\{0, C_i - d_i \}$ & Positive difference between the completion time and the due date of all jobs; appropriate when early jobs bring no reward \\ 
    Maximum lateness    & $L_{\max}$    & $\max\limits_{\forall i \in 1,\dots,n}\{C_i - d_i\}$ & Maximal difference between the completion time and the due date of all jobs; appropriate when there is a positive reward for completing a job early \\
    \bottomrule
\end{tabularx}
\end{table*} 

\begin{table*}[!t]
\caption{Well-known scheduling performance measures.}\label{tab:objectives}
\centering
\begin{tabularx}{\textwidth}{@{}>{\raggedright\arraybackslash}p{2cm}llY@{}}
    \toprule
    \textbf{Objective function} & \textbf{Symbol} & \textbf{Formulation} & \textbf{Interpretation} \\
    \midrule
    Makespan & $C_{\max}$ & $\max\limits_{\forall i \in 1,\dots,n}\{C_i\}$ & The maximal completion time between all operations of all jobs \\ \addlinespace
    Maximum workload    & $W_{M}$       & $\max\limits_{\forall k \in 1,\dots,m}\{\sum_{i=1}^{|B_k|} p_{ik}\}$ & The machine with most working time; appropriate to balance the workload among machines \\ \addlinespace
    Total \newline workload      & $W_{T}$       & $\sum_{i=1}^{o} p_{i\kappa(i)}$ & Sum of the working time on all machines; appropriate to reduce the total amount of processing time taken to produce all operations \\  \addlinespace
    Total \newline tardiness     & $T$           & $\max\limits_{\forall i \in 1,\dots,n}\{0, C_i - d_i \}$ & Positive difference between the completion time and the due date of all jobs; appropriate when early jobs bring no reward \\  \addlinespace
    Mean tardiness     & $\bar T$       & $\max\limits_{\forall i \in 1,\dots,n}\{0, C_i - d_i \}$ & Positive difference between the completion time and the due date of all jobs; appropriate when early jobs bring no reward \\  \addlinespace
    Maximum lateness    & $L_{\max}$    & $\max\limits_{\forall i \in 1,\dots,n}\{C_i - d_i\}$ & Maximal difference between the completion time and the due date of all jobs; appropriate when there is a positive reward for completing a job early \\
    \bottomrule
\end{tabularx}
\end{table*} 
\end{document}

相关内容