我想用 latex 准备一份试卷,其中问题的依据点应右对齐。我尝试使用 article 文档类,但没有成功。
梅威瑟:
\documentclass[11pt,a4paper]{article}
\usepackage{amssymb,amsmath,fullpage}
\usepackage{enumerate}
\usepackage{multicol}
\usepackage{fancyhdr}
\pagestyle{fancy}
\fancyhf{}
\chead{(\thepage)}
\renewcommand{\headrulewidth}{0pt}
\renewcommand{\footrulewidth}{0pt}
\newcommand{\marksA}[1]{\hfill\makebox[0pt][l]{~#1}}
\begin{document}
\thispagestyle{empty}
\pagenumbering{roman}
\begin{flushright}
\it\small H(I)-Mathematics-H-I(Module-I)
\end{flushright}
\begin{center}
\textbf{\Large 2017}\\[2ex]
\textbf{MATHEMATICS - HONOURS}\\
\textbf{\small First Paper}\\
\textbf{(Module-I)}\\
\textbf{\small Full Marks - 50}\\[2ex]
{ \it The figures in the margin indicate full marks.}\\
{\it Candidates are requested to give their answer in their own words as far as practicable}
\end{center}
% FRONT Matter
\pagenumbering{arabic}
\begin{center}
\bf Group - A\\
(Marks - 35)
\end{center}
\begin{center}
Answer \textit{any seven} questions
\end{center}
\begin{enumerate}
\item State the ``First Principle of Mathematical Induction". Using this principle show htat $10^{n+1}+10^n+1$ is divisible by $3$ for all positive integers $n$. \marksA{$1+4$}
\item
\begin{enumerate}
\item Prove that $\phi(3n)=3\phi(n)$ if and only if $3$ is a divisor of $n$. \marksA{$3$}
\begin{multicols}{2}
\begin{enumerate}[(i)]
\item $\{x^2:x\in [0,1]\}$
\item $\{ 5+\sqrt{7}t:t\in \mathbb{Q} \}$
\item $(0,1])\cap (\mathbb{R}\setminus \mathbb{Q})$
\item $\{\frac{1}{x}:x\in(0,\infty) \}$
\end{enumerate}
\end{multicols}
\item item
\end{enumerate}
\end{enumerate}
\end{document}.
答案1
这是“布尔巴基诡计”,另外测量宽度并将最大值存储在辅助文件中。
这需要两次运行 LaTeX 才能稳定下来。
\documentclass[11pt,a4paper]{article}
\usepackage{amssymb,amsmath,fullpage}
\usepackage{enumerate}
\usepackage{multicol}
\usepackage{fancyhdr}
\pagestyle{fancy}
\fancyhf{}
\chead{(\thepage)}
\renewcommand{\headrulewidth}{0pt}
\renewcommand{\footrulewidth}{0pt}
\newlength{\finalwidth}
\newlength{\tempwidthA}
\newlength{\tempwidthB}
\makeatletter
\AtEndDocument{\write\@auxout{\global\finalwidth=\the\tempwidthB}}
\makeatother
\newcommand{\marksA}[1]{% the Bourbaki trick
\settowidth{\tempwidthA}{\quad#1}%
\ifdim\tempwidthA>\tempwidthB \global\tempwidthB=\tempwidthA\fi
\unskip
{\nobreak\hfill\penalty50\hskip1em\null\nobreak
\hfill \makebox[0pt][l]{\makebox[\finalwidth][r]{\normalfont\quad#1}}%
\parfillskip=0pt \finalhyphendemerits=0 \par}%
}
\begin{document}
\thispagestyle{empty}
\pagenumbering{roman}
\begin{flushright}
\itshape H(I)-Mathematics-H-I(Module-I)
\end{flushright}
\begin{center}
\textbf{\Large 2017}\\[2ex]
\textbf{MATHEMATICS -- HONOURS}\\
\textbf{First Paper}\\
\textbf{(Module-I)}\\
\textbf{Full Marks -- 50}\\[2ex]
{\itshape The figures in the margin indicate full marks.}\\
{\itshape Candidates are requested to give their answer in their
own words as far as practicable}
\end{center}
% FRONT Matter
\pagenumbering{arabic}
\begin{center}
\textbf{Group -- A}\\
(Marks - 35)
\end{center}
\begin{center}
Answer \textit{any seven} questions
\end{center}
\begin{enumerate}
\item State the ``First Principle of Mathematical Induction''.
Using this principle show that $10^{n+1}+10^n+1$ is divisible
by $3$ for all positive integers $n$. \marksA{$1+4$}
\item
\begin{enumerate}
\item Prove that $\phi(3n)=3\phi(n)$ if and only if $3$ is a divisor of $n$.\marksA{$3$}
\begin{multicols}{2}
\begin{enumerate}[(i)]
\item $\{x^2:x\in [0,1]\}$
\item $\{ 5+\sqrt{7}t:t\in \mathbb{Q} \}$
\item $(0,1])\cap (\mathbb{R}\setminus \mathbb{Q})$
\item $\{\frac{1}{x}:x\in(0,\infty) \}$
\end{enumerate}
\end{multicols}
\item item
\end{enumerate}
\end{enumerate}
\end{document}
我做了一些更改:我发现这\small
并没有增加什么,只是字体大小发生了奇怪的变化。也不\it
应该在新文档中使用:它已经过时并被弃用了 25 年多。结束引号应该输入为''
(两个撇号) 而不是"
。