我刚刚遇到这个问题Missing number, treated as zero. [ \begin{Cauchy} ]
,Illegal unit of measure (pt inserted). [ \begin{Cauchy} ]
我知道有人已经遇到过这个问题并且之前已经回答过了,但我的还没有解决,有人能帮帮我吗?代码如下所示。
\documentclass{article}
\usepackage{pifont}
\usepackage{enumerate}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amsthm}
\begin{document}
\newtheoremstyle{nonum}{}{}{\itshape}{}{\bfseries}{.}
{}{#1 (\mdseries #3)}
\theoremstyle{nonum}
\newtheorem{Cauchy}{Cauchy's Theorem}
\begin{Cauchy}[Third Version]
If $G$ is a simply connected open subset of $\mathbb{C}$, then for every closed rectifiable curve $\gamma$ in $G$, we have
\begin{equation*}
\int_\gamma f=0.
\end{equation*}
\end{Cauchy}
\end{document}
如果能够解决这个问题我将非常感激。
答案1
命令的第八个参数\newtheorem
必须包含空格或长度。它不能简单地是{}
:
\documentclass{article}
\usepackage{pifont}
\usepackage{enumerate}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amsthm}
\newtheoremstyle{nonum}
{}{}
{\itshape}{}
{\bfseries}{.}
{ } % This must contain either a space or a length
{#1 (\mdseries #3)}
\theoremstyle{nonum}
\begin{document}
\newtheorem{Cauchy}{Cauchy's Theorem}
\begin{Cauchy}[Third Version]
If $G$ is a simply connected open subset of $\mathbb{C}$, then for every closed rectifiable curve $\gamma$ in $G$, we have
\begin{equation*}
\int_\gamma f=0.
\end{equation*}
\end{Cauchy}
\end{document}