对于以下一组长方程,如何
1- 在单列和双列模式下美观地对齐和换行,而不跨越单列专用空间,并且
2- 分别控制两者内的垂直间距align
,aligned
以增强可读性,因为例如,我\begin{spreadlines}{1em}
只需要align
在具有另一个设置时产生影响aligned
(例如\begin{spreadlines}{0.5em}
无需手动使用\\[<spacing>]
?
\documentclass{article}
\usepackage{mathtools,multicol,lipsum}
\usepackage[bold-style=TeX]{unicode-math}
\setmathfont[math-style=ISO]{Cambria Math}
\usepackage[showframe]{geometry}
\begin{document}
\begin{spreadlines}{1em}
\begin{align}
&\frac{1}{\sigma(1-\alpha)} \sum_{j=0}^{k-1} \frac{T^{j+1}-T^j}{\tau_{j+1}} \left(1-\exp\left(-\sigma\tau_{j+1}\right)\right)\cdot\exp\left(-\sigma(k-j-1)\tau_{j+1}\right) = \nabla^2 T^{k}\\
%
&\frac{1}{\sigma(1-\alpha)} \begin{bmatrix*}[l] \left(T^k-T^{k-1}\right) \frac{1-\exp\left(-\sigma\tau_k\right)}{\tau_k} \\
+ \sum_{j=0}^{k-2} \left( T^{j+1} - T^j \right) \cdot (1-\exp\left(-\sigma\tau_{j+1}\right)) \cdot \exp \left( - \sigma (k-j-1) \tau_{j+1} \right)\end{bmatrix*} = \nabla^2 T^{k}\\
%
& \begin{aligned} &\left(T^k-T^{k-1}\right) \frac{1-\exp\left(-\sigma\tau_k\right)}{\tau_k} - [\sigma(1-\alpha)]\nabla^2 T^{k} \\
&= - \sum_{j=0}^{k-2} \left( T^{j+1} - T^j \right) \cdot (1-\exp\left(-\sigma\tau_{j+1}\right)) \cdot \exp \left( - \sigma (k-j-1) \tau_{j+1} \right) \end{aligned}\\
%
&\begin{aligned} &T^k \frac{1-\exp\left(-\sigma\tau_k\right)}{\tau_k} - [\sigma(1-\alpha)]\nabla^2 T^{k} = \\
&T^{k-1} \frac{1-\exp\left(-\sigma\tau_k\right)}{\tau_k} - \sum_{j=0}^{k-2} \left( T^{j+1} - T^j \right) \cdot (1-\exp\left(-\sigma\tau_{j+1}\right)) \cdot \exp \left( - \sigma (k-j-1) \tau_{j+1} \right) \end{aligned}
\end{align}
\end{spreadlines}
\newpage
\begin{multicols}{2}
the above set of equations is needed to be typeset here again in a two-column mode.
\end{multicols}
\end{document}
答案1
这仍然有点太满,但可能会给你一个开始
主要变化:
- 不要使用扩展线,只
\\[\jot]
在外层换行符和\\
内层换行符上使用。 - 不要使用 bmatrix 显示方程式(它使用 textstyle math 显示矩阵)
- 当没有对齐时,使用
multlined
(或类似的) 。align
\documentclass{article}
\usepackage{mathtools,multicol,lipsum}
\usepackage[bold-style=TeX]{unicode-math}
\setmathfont[math-style=ISO]{Cambria Math}
\usepackage[showframe]{geometry}
\allowdisplaybreaks
\begin{document}
\begin{gather}
\frac{1}{\sigma(1-\alpha)} \sum_{j=0}^{k-1} \frac{T^{j+1}-T^j}{\tau_{j+1}} \left(1-\exp\left(-\sigma\tau_{j+1}\right)\right)\cdot\exp\left(-\sigma(k-j-1)\tau_{j+1}\right) = \nabla^2 T^{k}\\[\jot]
%
\frac{1}{\sigma(1-\alpha)} \left[\begin{multlined} \left(T^k-T^{k-1}\right) \frac{1-\exp\left(-\sigma\tau_k\right)}{\tau_k} \\
+ \sum_{j=0}^{k-2} \left( T^{j+1} - T^j \right) \cdot (1-\exp\left(-\sigma\tau_{j+1}\right)) \cdot \exp \left( - \sigma (k-j-1) \tau_{j+1} \right)\end{multlined}\right] = \nabla^2 T^{k}\\[\jot]
%
\begin{multlined} \left(T^k-T^{k-1}\right) \frac{1-\exp\left(-\sigma\tau_k\right)}{\tau_k} - [\sigma(1-\alpha)]\nabla^2 T^{k} \\
= - \sum_{j=0}^{k-2} \left( T^{j+1} - T^j \right) \cdot (1-\exp\left(-\sigma\tau_{j+1}\right)) \cdot \exp \left( - \sigma (k-j-1) \tau_{j+1} \right) \end{multlined}\\[\jot]
%
\begin{multlined} T^k \frac{1-\exp\left(-\sigma\tau_k\right)}{\tau_k} - [\sigma(1-\alpha)]\nabla^2 T^{k} = \\
T^{k-1} \frac{1-\exp\left(-\sigma\tau_k\right)}{\tau_k} - \sum_{j=0}^{k-2} \left( T^{j+1} - T^j \right) \cdot (1-\exp\left(-\sigma\tau_{j+1}\right)) \cdot \exp \left( - \sigma (k-j-1) \tau_{j+1} \right) \end{multlined}
\end{gather}
\begin{multicols}{2}
the above set of equations is needed to be typeset here again in a two-column mode.
\begin{gather}
\begin{multlined}
\frac{1}{\sigma(1-\alpha)} \sum_{j=0}^{k-1} \frac{T^{j+1}-T^j}{\tau_{j+1}} \left(1-\exp\left(-\sigma\tau_{j+1}\right)\right)\cdot\\\exp\left(-\sigma(k-j-1)\tau_{j+1}\right)\\ = \nabla^2 T^{k}
\end{multlined}\\[\jot]
%
\begin{multlined}
\frac{1}{\sigma(1-\alpha)} \bigl[ \left(T^k-T^{k-1}\right) \frac{1-\exp\left(-\sigma\tau_k\right)}{\tau_k} \\
+ \sum_{j=0}^{k-2} \left( T^{j+1} - T^j \right) \cdot (1-\exp\left(-\sigma\tau_{j+1}\right)) \cdot\\
\exp \left( - \sigma (k-j-1) \tau_{j+1} \right)\bigr]\\ = \nabla^2 T^{k}
\end{multlined}\\[\jot]
%
\begin{multlined} \left(T^k-T^{k-1}\right) \frac{1-\exp\left(-\sigma\tau_k\right)}{\tau_k} - [\sigma(1-\alpha)]\nabla^2 T^{k} \\
= - \sum_{j=0}^{k-2} \left( T^{j+1} - T^j \right) \cdot (1-\exp\left(-\sigma\tau_{j+1}\right)) \cdot\\
\exp \left( - \sigma (k-j-1) \tau_{j+1} \right) \end{multlined}\\[\jot]
%
\begin{multlined} T^k \frac{1-\exp\left(-\sigma\tau_k\right)}{\tau_k} - [\sigma(1-\alpha)]\nabla^2 T^{k} = \\
T^{k-1} \frac{1-\exp\left(-\sigma\tau_k\right)}{\tau_k}\\ - \sum_{j=0}^{k-2} \left( T^{j+1} - T^j \right) \cdot (1-\exp\left(-\sigma\tau_{j+1}\right)) \cdot\\ \exp \left( - \sigma (k-j-1) \tau_{j+1} \right) \end{multlined}
\end{gather}
\end{multicols}
\end{document}
答案2
不错的@DavidCarlisle 答案的一个小变化(+1):
- 而不是
\exp(...)
使用e^{-....}
- 在包中
multicolum
使用定义\medmath
nccmath
\documentclass{article}
\usepackage[showframe]{geometry}
\usepackage[bold-style=TeX]{unicode-math}
\setmathfont[math-style=ISO]{Cambria Math}
\usepackage{nccmath, mathtools}
\makeatletter
\let\origexp\exp
\DeclareRobustCommand{\exp}{\@ifnextchar^{\Exp^{}}{\origexp }}
\def\Exp^#1{\,\mathop{\mathrm{\mathstrut e}\!\!}\nolimits^{#1}\,}
\makeatother
\allowdisplaybreaks
\usepackage{multicol,lipsum}
\begin{document}
\begin{gather}
\frac{1}{\sigma(1-\alpha)}
\sum_{j=0}^{k-1}\frac{T^{j+1} - T^j}{\tau_{j+1}}
\bigl(1-\exp^{-\sigma\tau_{j+1}}\bigr)
\cdot\exp^{(-\sigma(k-j-1)\tau_{j+1})}
= \nabla^2 T^{k} \\
%
\frac{1}{\sigma(1-\alpha)}
\left[
\left(T^k-T^{k-1}\right)
\frac{1-\exp^{-\sigma\tau_k}}{\tau_k} +
\displaystyle\sum_{j=0}^{k-2} \bigl( T^{j+1} - T^j \bigr)
\cdot \bigl(1-\exp^{-\sigma\tau_{j+1}}\bigr)
\cdot \exp^{-\sigma(k-j-1)\tau_{j+1}}
\right]
= \nabla^2 T^{k} \\
%
\bigl(T^k-T^{k-1}\bigr) \frac{1-\exp^{-\sigma\tau_k}}{\tau_k}
- \bigl[\sigma(1-\alpha)\bigr]\nabla^2 T^{k}
= - \sum_{j=0}^{k-2} \bigl( T^{j+1} - T^j \bigr)
\cdot \bigl(1-\exp^{-\sigma\tau_{j+1}}\bigr)
\cdot \exp^{- \sigma(k-j-1)\tau_{j+1}} \\
%
\begin{multlined}[0.75\linewidth]
T^k \frac{1-\exp^{-\sigma\tau_k}}{\tau_k}
- \bigl[\sigma(1-\alpha)\bigr]\nabla^2 T^{k} = \\[-1ex]
T^{k-1} \frac{1-\exp^{-\sigma\tau_k}}{\tau_k}
- \sum_{j=0}^{k-2} \left( T^{j+1} - T^j \right)
\cdot \bigl(1-\exp^{-\sigma\tau_{j+1}}\bigr)
\cdot \exp^{- \sigma (k-j-1) \tau_{j+1}}
\end{multlined}
\end{gather}
%%%%
\hrule
%%%%
\begin{multicols}{2}
The above set of equations is needed to be typeset here again in a two-column mode.
\begin{gather}
%\begin{gathered}
\medmath{\begin{multlined}[0.8\linewidth]
\frac{1}{\sigma(1-\alpha)}
\sum_{j=0}^{k-1}\frac{T^{j+1} - T^j}{\tau_{j+1}}= \\[-1ex]
\left(1-\exp^{-\sigma\tau_{j+1}}\right)
\cdot\exp^{-\sigma(k-j-1)\tau_{j+1}}
= \nabla^2 T^{k}
\end{multlined}} \\[2ex]
%
\medmath{\begin{multlined}[0.8\linewidth]
\frac{1}{\sigma(1-\alpha)}
\Biggl[
\bigl(T^k - T^{k-1}\bigr)
\frac{1-\exp^{-\sigma\tau_k}}{\tau_k} + \\[-1ex]
\sum_{j=0}^{k-2} \bigl( T^{j+1} - T^j \bigr)
\cdot \bigl(1-\exp^{-\sigma\tau_{j+1}}\bigr) \\[-1ex]
\cdot \exp^{-\sigma(k-j-1)\tau_{j+1}}
\Biggr]
= \nabla^2 T^{k}
\end{multlined}} \\[2ex]
%
\medmath{\begin{multlined}[0.8\linewidth]
\bigl(T^k-T^{k-1}\bigr) \frac{1-\exp^{-\sigma\tau_k}}{\tau_k}
- \bigl[\sigma(1-\alpha)\bigr]\nabla^2 T^{k} = \\[-1ex]
- \sum_{j=0}^{k-2} \bigl( T^{j+1} - T^j \bigr)
\cdot \bigl(1-\exp^{-\sigma\tau_{j+1}}\bigr)
\cdot \exp^{- \sigma(k-j-1)\tau_{j+1}}
\end{multlined}} \\[2ex]
%
\medmath{\begin{multlined}[0.8\linewidth]
T^k \frac{1-\exp^{-\sigma\tau_k}}{\tau_k} - \bigl[\sigma(1-\alpha)\bigr]\nabla^2
= T^{k-1} \frac{1-\exp^{-\sigma\tau_k}}{\tau_k} \\[-1ex]
- \sum_{j=0}^{k-2} \bigl( T^{j+1} - T^j \bigr)
\cdot \bigl(1-\exp^{-\sigma\tau_{j+1}}\bigr)
\cdot \exp^{- \sigma (k-j-1) \tau_{j+1}}
\end{multlined}}
\end{gather}
\end{multicols}
\end{document}