\documentclass{book}
\usepackage{graphicx}
\usepackage{subcaption}
\begin{document}
\begin{figure}[H]
\centering
\begin{subfigure}{0.45\linewidth}
\centering
\includegraphics[width=\linewidth]{Example-Image}
\caption{}
\label{fig:dragratio}
\end{subfigure}
\hfill
\begin{subfigure}{0.45\linewidth}
\centering
\includegraphics[width=\linewidth]{Example-Image}
\caption{}
\label{fig:dragratio2}
\end{subfigure}
\\[\baselineskip]
\begin{subfigure}[H]{0.9\linewidth}
\centering
\includegraphics[width=\linewidth]{Example-Image}
\caption{}
\label{fig:dragratio3}
\end{subfigure}
\centering
\caption{(a) Numerical solutions for the constant-curvature body, $F(x)=x(1-x), x \in (0,1)$, at small times. This figure shows the drag force $D$ versus the scaled mass $M$ for various values of the ratio between the inertia $I$ and the mass $M$, i.e. for various values of $R=\frac{I}{M}$. Here $g=10$ and $A=0.7$. (b) As for (a) but with $A=0.5$. (c) As for (a) and (b) but with $A=0.25$.}
\end{figure}
\end{document}