在正确的子部分下设置表格

在正确的子部分下设置表格

我正在通过 Latex 撰写我的硕士论文,但无法将表格放在正确的小节下。有类似的问题,建议使用清晰的页面,但问题是三个表格彼此之间相距很远,而它们本来可以在一个页面中彼此相隔。有办法解决这个问题吗?

\documentclass[14pt, a4paper, twoside]{report} % 'twoside' when printing

\usepackage[utf8]{inputenc}             % UTF-8 input
\usepackage[english]{babel}             % Set language to english
\usepackage{blindtext}                  % Use \Blinddocument or \blindmathpaper
\usepackage{graphicx}
\usepackage{graphics}
\usepackage{fancyhdr}               
\usepackage{hyperref}               
\usepackage{amsmath}            
\usepackage{amsfonts}               
\usepackage{amsthm}                 
\usepackage{gensymb}                
\usepackage{enumitem}               
\usepackage{mathtools}              
\usepackage{color}                  

\usepackage{pdfpages}               
\usepackage{parskip}                
\usepackage{multicol}                   
\usepackage[sharp]{easylist}        
\usepackage{makeidx}                
\usepackage[linesnumbered,ruled]{algorithm2e}
\usepackage{tikz-cd}                    
\usepackage{listings}                   
\usepackage{etoolbox}                   
\usepackage[expansion=false]{microtype} 
\usepackage[toc, page]{appendix}                
\usepackage{framed}                 
\usepackage{multirow}               
\usepackage{afterpage}              
\usepackage{blindtext}              

\usepackage{xcolor}
\usepackage{bm}
\usepackage[T1]{fontenc}
\usepackage{lipsum}
\usepackage{physics}
\usepackage[makeroom]{cancel}
\usepackage{xpatch}
\usepackage{geometry}
\usepackage{array}
\usepackage{booktabs}
\usepackage{subcaption} 
\usepackage{tabularx}
\usepackage{floatrow, makecell}%
% Declare first page in every chapter as 'fancy' pagestyle
\makeatletter


\renewcommand\chapter{\if@openright\cleardoublepage\else\clearpage\fi

    \thispagestyle{fancy}%
    \global\@topnum\z@
    \@afterindentfalse
    \secdef\@chapter\@schapter}
\begin{document}
\chapter{Global Sensitivity Analysis}
\section{Sensitivity analysis of the Non-dimensional model}
\subsection{Sobol method}
\subsubsection{$x$}
\subsubsection{$y_{1}$}
\subsubsection{$y_{2}$}

\subsection{Random Balance Designs Fourier Amplitude Sensitivity Test method}
\subsubsection{$x$}


\begin{table}[h]
    \centering
    \begin{subtable}[b]{.22\linewidth}
        \centering
        \caption{Max value of $x$.}
        \begin{tabular}{lr}
            \toprule
            {} &  \multicolumn{1}{c}{$S_{1}$} \\ 
            \midrule
            $x_{0}$        &  0.999823 \\
            $\gamma_{12}$  &  0.000322 \\
            $\beta_{1}$    &  0.000266 \\
            $\beta_{2}$    &  0.000147 \\
            ${y_{2}}_{0}$  &  0.000047 \\
            $g_{12}$       &  0.000037 \\
            $\epsilon_{1}$ &  0.000032 \\
            $\omega_{22}$  &  0.000019 \\
            $\epsilon_{2}$ & -0.000004 \\
            ${y_{1}}_{0}$  & -0.000086 \\
            $\omega_{11}$  & -0.000192 \\
            \bottomrule
        \end{tabular}
    \end{subtable}\hfill
    \begin{subtable}[b]{.22\linewidth}
        \centering
        \caption{Mean value of $x$.}
        \begin{tabular}{lr}
            \toprule
            {} &    \multicolumn{1}{c}{$S_{1}$} \\
            \midrule
            $\beta_{2}$    &  0.071375 \\
            $g_{12}$       &  0.003340 \\
            $\beta_{1}$    &  0.001563 \\
            $\omega_{22}$  &  0.001520 \\
            ${y_{2}}_{0}$  &  0.001247 \\
            $x_{0}$        &  0.001150 \\
            $\epsilon_{2}$ &  0.000282 \\
            ${y_{1}}_{0}$  &  0.000075 \\
            $\gamma_{12}$  &  0.000013 \\
            $\omega_{11}$  & -0.000095 \\
            $\epsilon_{1}$ & -0.000232 \\
            \bottomrule
        \end{tabular}
    \end{subtable}\hfill
    \begin{subtable}[b]{.22\linewidth}
        \centering
        \caption{Median value of $x$.}
        \begin{tabular}{lr}
            \toprule
            {} &    \multicolumn{1}{c}{$S_{1}$} \\
            \midrule
            $\beta_{2}$    &  0.067302 \\
            $g_{12}$       &  0.003395 \\
            $\omega_{22}$  &  0.001542 \\
            $\beta_{1}$    &  0.001426 \\
            ${y_{2}}_{0}$  &  0.001322 \\
            $x_{0}$        &  0.000893 \\
            $\epsilon_{2}$ &  0.000173 \\
            ${y_{1}}_{0}$  &  0.000083 \\
            $\gamma_{12}$  & -0.000015 \\
            $\omega_{11}$  & -0.000066 \\
            $\epsilon_{1}$ & -0.000212 \\
            \bottomrule
        \end{tabular} 
    \end{subtable}\hfill
    \begin{subtable}[b]{.22\linewidth}
        \centering
        \caption{Eqm. value of $x$.}
        \begin{tabular}{lr}
            \toprule
            {} &   $S_{1}$ \\
            \midrule
            $\omega_{22}$  &  0.004223 \\
            $\omega_{11}$  &  0.000382 \\
            $g_{12}$       &  0.000229 \\
            $\beta_{2}$    &  0.000131 \\
            $\beta_{1}$    &  0.000109 \\
            ${y_{1}}_{0}$  &  0.000011 \\
            $\epsilon_{1}$ & -0.000013 \\
            $x_{0}$        & -0.000037 \\
            $\gamma_{12}$  & -0.000089 \\
            $\epsilon_{2}$ & -0.000129 \\
            ${y_{2}}_{0}$  & -0.000141 \\
            \bottomrule
        \end{tabular}
    \end{subtable}
    \caption{Sesitivity of $x$.}
\end{table}

\subsubsection{$y_{1}$}

\begin{table}[h]
    \centering
    \begin{subtable}[b]{.22\linewidth}
        \centering
        \caption{Max value of $y_{1}$.}
        \begin{tabular}{lr}
            \toprule
            {} &   \multicolumn{1}{c}{$S_{1}$}  \\
            \midrule
            ${y_{1}}_{0}$  &  0.999839 \\
            $\gamma_{12}$  &  0.000198 \\
            $\omega_{11}$  &  0.000151 \\
            $\epsilon_{1}$ &  0.000077 \\
            $\omega_{22}$  &  0.000009 \\
            $\beta_{1}$    & -0.000034 \\
            ${y_{2}}_{0}$  & -0.000035 \\
            $x_{0}$        & -0.000046 \\
            $\epsilon_{2}$ & -0.000093 \\
            $\beta_{2}$    & -0.000139 \\
            $g_{12}$       & -0.000249 \\
            \bottomrule
        \end{tabular}
    \end{subtable}\hfill
    \begin{subtable}[b]{.22\linewidth}
        \centering
        \caption{Mean value of $y_{1}$.}
        \begin{tabular}{lr}
            \toprule
            {} &    \multicolumn{1}{c}{$S_{1}$}  \\
            \midrule
            $\beta_{2}$    &  0.075955 \\
            $g_{12}$       &  0.002982 \\
            ${y_{1}}_{0}$  &  0.002090 \\
            $\omega_{22}$  &  0.001381 \\
            $\beta_{1}$    &  0.001270 \\
            ${y_{2}}_{0}$  &  0.000597 \\
            $x_{0}$        &  0.000273 \\
            $\epsilon_{2}$ &  0.000103 \\
            $\omega_{11}$  &  0.000057 \\
            $\gamma_{12}$  & -0.000031 \\
            $\epsilon_{1}$ & -0.000053 \\
            \bottomrule
        \end{tabular}
    \end{subtable}\hfill
    \begin{subtable}[b]{.22\linewidth}
        \centering
        \caption{Median value of $y_{1}$.}
        \begin{tabular}{lr}
            \toprule
            {} &    \multicolumn{1}{c}{$S_{1}$}  \\
            \midrule
            $\beta_{2}$    &  0.072321 \\
            $g_{12}$       &  0.002983 \\
            ${y_{1}}_{0}$  &  0.001799 \\
            $\omega_{22}$  &  0.001496 \\
            $\beta_{1}$    &  0.001112 \\
            ${y_{2}}_{0}$  &  0.000621 \\
            $x_{0}$        &  0.000278 \\
            $\omega_{11}$  &  0.000067 \\
            $\epsilon_{2}$ &  0.000046 \\
            $\epsilon_{1}$ & -0.000025 \\
            $\gamma_{12}$  & -0.000034 \\
            \bottomrule
        \end{tabular}
    \end{subtable}\hfill
    \begin{subtable}[b]{.22\linewidth}
        \centering
        \caption{Eqm. value of $y_{1}$.}
        \begin{tabular}{lr}
            \toprule
            {} &    \multicolumn{1}{c}{$S_{1}$}  \\
            \midrule
            $\beta_{2}$    &  0.070960 \\
            $g_{12}$       &  0.002951 \\
            ${y_{1}}_{0}$  &  0.001774 \\
            $\omega_{22}$  &  0.001540 \\
            $\beta_{1}$    &  0.001182 \\
            ${y_{2}}_{0}$  &  0.000605 \\
            $x_{0}$        &  0.000255 \\
            $\epsilon_{2}$ &  0.000077 \\
            $\omega_{11}$  &  0.000034 \\
            $\epsilon_{1}$ & -0.000012 \\
            $\gamma_{12}$  & -0.000020 \\
            \bottomrule
        \end{tabular}
    \end{subtable}
    \caption{Sesitivity of $y_{1}$.}
\end{table}

\subsubsection{ $y_{2}$}
\begin{table}[h]
    \centering
    \begin{subtable}[b]{.22\linewidth}
        \centering
        \caption{Max value of $y_{2}$.}
        \begin{tabular}{lr}
            \toprule
            {} &    \multicolumn{1}{c}{$S_{1}$}  \\
            \midrule
            ${y_{2}}_{0}$  &  0.999839 \\
            $\omega_{22}$  &  0.000432 \\
            $\omega_{11}$  &  0.000172 \\
            $x_{0}$        &  0.000110 \\
            $\epsilon_{1}$ &  0.000104 \\
            $\gamma_{12}$  &  0.000063 \\
            $\epsilon_{2}$ &  0.000018 \\
            $g_{12}$       & -0.000060 \\
            $\beta_{1}$    & -0.000154 \\
            ${y_{1}}_{0}$  & -0.000164 \\
            $\beta_{2}$    & -0.000174 \\
            \bottomrule
        \end{tabular}
    \end{subtable}\hfill
    \begin{subtable}[b]{.22\linewidth}
        \centering
        \caption{Mean value of $y_{2}$.}
        \begin{tabular}{lr}
            \toprule
            {} &    \multicolumn{1}{c}{$S_{1}$}  \\
            \midrule
            $\beta_{2}$    &  0.078556 \\
            ${y_{2}}_{0}$  &  0.004368 \\
            $g_{12}$       &  0.003232 \\
            $\beta_{1}$    &  0.001764 \\
            $\omega_{22}$  &  0.001399 \\
            $\epsilon_{2}$ &  0.000124 \\
            $\gamma_{12}$  &  0.000072 \\
            $\omega_{11}$  &  0.000064 \\
            $x_{0}$        &  0.000063 \\
            ${y_{1}}_{0}$  & -0.000141 \\
            $\epsilon_{1}$ & -0.000146 \\
            \bottomrule
        \end{tabular}
    \end{subtable}\hfill
    \begin{subtable}[b]{.22\linewidth}
        \centering
        \caption{Median value of $y_{2}$.}
        \begin{tabular}{lr}
            \toprule
            {} &    \multicolumn{1}{c}{$S_{1}$}  \\
            \midrule
            $\beta_{2}$    &  0.075486 \\
            ${y_{2}}_{0}$  &  0.004046 \\
            $g_{12}$       &  0.003262 \\
            $\beta_{1}$    &  0.001588 \\
            $\omega_{22}$  &  0.001538 \\
            $\epsilon_{2}$ &  0.000075 \\
            $x_{0}$        &  0.000066 \\
            $\omega_{11}$  &  0.000063 \\
            $\gamma_{12}$  &  0.000061 \\
            ${y_{1}}_{0}$  & -0.000132 \\
            $\epsilon_{1}$ & -0.000144 \\
            \bottomrule
        \end{tabular}
    \end{subtable}\hfill
    \begin{subtable}[b]{.22\linewidth}
        \centering
        \caption{Eqm. value of $y_{2}$.}
        \begin{tabular}{lr}
            \toprule
            {} &   \multicolumn{1}{c}{$S_{1}$}  \\
            \midrule
            $\beta_{2}$    &  0.074109 \\
            ${y_{2}}_{0}$  &  0.003934 \\
            $g_{12}$       &  0.003281 \\
            $\beta_{1}$    &  0.001676 \\
            $\omega_{22}$  &  0.001576 \\
            $\epsilon_{2}$ &  0.000100 \\
            $\omega_{11}$  &  0.000069 \\
            $\gamma_{12}$  &  0.000043 \\
            $x_{0}$        &  0.000039 \\
            ${y_{1}}_{0}$  & -0.000113 \\
            $\epsilon_{1}$ & -0.000141 \\
            \bottomrule
        \end{tabular}
    \end{subtable}
    \caption{Sesitivity of $y_{2}$.}
\end{table}
\subsection{Delta Moment-Independent Measure}
\subsubsection{$x$}
\subsubsection{$y_{1}$}
\subsubsection{$y_{2}$}
\end{document}

答案1

渴望评论...

正如我在评论中提到的,您首先需要subsubcaption在文档中启用(通过添加\setcounter{secnumdepth}{3}到文档序言中)。然后定义页面上表格数量和非浮动页面上文本分数的新限制可能是明智的(有关详细信息,请参阅控制 LaTeX 浮动)。当然,您还需要将浮点放置选项更改为[ht]::

\setcounter{topnumber}{3}
\setcounter{bottomnumber}{3}
\setcounter{totalnumber}{4}     % 5 ?
\renewcommand{\textfraction}{0.07}  % allow minimal text w. figs

根据您的文档示例考虑这个 MWE 可以是:

\documentclass{report} % 'twoside' when printing
\usepackage{geometry}
\usepackage{booktabs}
\usepackage{subcaption}
    \setcounter{secnumdepth}{3} % <---

    \setcounter{topnumber}{3}
    \setcounter{bottomnumber}{3}
    \setcounter{totalnumber}{4}     % 5 ?
    \renewcommand{\textfraction}{0.07}  % allow minimal text w. figs

\begin{document}
\chapter{Global Sensitivity Analysis}
\section{Sensitivity analysis of the Non-dimensional model}
\subsection{Sobol method}
\subsubsection{$x$}
\subsubsection{$y_{1}$}
\subsubsection{$y_{2}$}

\subsection{Random Balance Designs Fourier Amplitude Sensitivity Test method}

\subsubsection{$x$}
\begin{table}[ht]
    \centering
    \begin{subtable}[b]{.22\linewidth}
        \centering
        \caption{Max value of $x$.}
        \begin{tabular}{lr}
            \toprule
            {} &  \multicolumn{1}{c}{$S_{1}$} \\
            \midrule
            $x_{0}$        &  0.999823 \\
            $\gamma_{12}$  &  0.000322 \\
            $\beta_{1}$    &  0.000266 \\
            $\beta_{2}$    &  0.000147 \\
            ${y_{2}}_{0}$  &  0.000047 \\
            $g_{12}$       &  0.000037 \\
            $\epsilon_{1}$ &  0.000032 \\
            $\omega_{22}$  &  0.000019 \\
            $\epsilon_{2}$ & -0.000004 \\
            ${y_{1}}_{0}$  & -0.000086 \\
            $\omega_{11}$  & -0.000192 \\
            \bottomrule
        \end{tabular}
    \end{subtable}\hfill
    \begin{subtable}[b]{.22\linewidth}
        \centering
        \caption{Mean value of $x$.}
        \begin{tabular}{lr}
            \toprule
            {} &    \multicolumn{1}{c}{$S_{1}$} \\
            \midrule
            $\beta_{2}$    &  0.071375 \\
            $g_{12}$       &  0.003340 \\
            $\beta_{1}$    &  0.001563 \\
            $\omega_{22}$  &  0.001520 \\
            ${y_{2}}_{0}$  &  0.001247 \\
            $x_{0}$        &  0.001150 \\
            $\epsilon_{2}$ &  0.000282 \\
            ${y_{1}}_{0}$  &  0.000075 \\
            $\gamma_{12}$  &  0.000013 \\
            $\omega_{11}$  & -0.000095 \\
            $\epsilon_{1}$ & -0.000232 \\
            \bottomrule
        \end{tabular}
    \end{subtable}\hfill
    \begin{subtable}[b]{.22\linewidth}
        \centering
        \caption{Median value of $x$.}
        \begin{tabular}{lr}
            \toprule
            {} &    \multicolumn{1}{c}{$S_{1}$} \\
            \midrule
            $\beta_{2}$    &  0.067302 \\
            $g_{12}$       &  0.003395 \\
            $\omega_{22}$  &  0.001542 \\
            $\beta_{1}$    &  0.001426 \\
            ${y_{2}}_{0}$  &  0.001322 \\
            $x_{0}$        &  0.000893 \\
            $\epsilon_{2}$ &  0.000173 \\
            ${y_{1}}_{0}$  &  0.000083 \\
            $\gamma_{12}$  & -0.000015 \\
            $\omega_{11}$  & -0.000066 \\
            $\epsilon_{1}$ & -0.000212 \\
            \bottomrule
        \end{tabular}
    \end{subtable}\hfill
    \begin{subtable}[b]{.22\linewidth}
        \centering
        \caption{Eqm. value of $x$.}
        \begin{tabular}{lr}
            \toprule
            {} &   $S_{1}$ \\
            \midrule
            $\omega_{22}$  &  0.004223 \\
            $\omega_{11}$  &  0.000382 \\
            $g_{12}$       &  0.000229 \\
            $\beta_{2}$    &  0.000131 \\
            $\beta_{1}$    &  0.000109 \\
            ${y_{1}}_{0}$  &  0.000011 \\
            $\epsilon_{1}$ & -0.000013 \\
            $x_{0}$        & -0.000037 \\
            $\gamma_{12}$  & -0.000089 \\
            $\epsilon_{2}$ & -0.000129 \\
            ${y_{2}}_{0}$  & -0.000141 \\
            \bottomrule
        \end{tabular}
    \end{subtable}
    \caption{Sesitivity of $x$.}
\end{table}

\subsubsection{$y_{1}$}
\begin{table}[ht]
    \centering
    \begin{subtable}[b]{.22\linewidth}
        \centering
        \caption{Max value of $y_{1}$.}
        \begin{tabular}{lr}
            \toprule
            {} &   \multicolumn{1}{c}{$S_{1}$}  \\
            \midrule
            ${y_{1}}_{0}$  &  0.999839 \\
            $\gamma_{12}$  &  0.000198 \\
            $\omega_{11}$  &  0.000151 \\
            $\epsilon_{1}$ &  0.000077 \\
            $\omega_{22}$  &  0.000009 \\
            $\beta_{1}$    & -0.000034 \\
            ${y_{2}}_{0}$  & -0.000035 \\
            $x_{0}$        & -0.000046 \\
            $\epsilon_{2}$ & -0.000093 \\
            $\beta_{2}$    & -0.000139 \\
            $g_{12}$       & -0.000249 \\
            \bottomrule
        \end{tabular}
    \end{subtable}\hfill
    \begin{subtable}[b]{.22\linewidth}
        \centering
        \caption{Mean value of $y_{1}$.}
        \begin{tabular}{lr}
            \toprule
            {} &    \multicolumn{1}{c}{$S_{1}$}  \\
            \midrule
            $\beta_{2}$    &  0.075955 \\
            $g_{12}$       &  0.002982 \\
            ${y_{1}}_{0}$  &  0.002090 \\
            $\omega_{22}$  &  0.001381 \\
            $\beta_{1}$    &  0.001270 \\
            ${y_{2}}_{0}$  &  0.000597 \\
            $x_{0}$        &  0.000273 \\
            $\epsilon_{2}$ &  0.000103 \\
            $\omega_{11}$  &  0.000057 \\
            $\gamma_{12}$  & -0.000031 \\
            $\epsilon_{1}$ & -0.000053 \\
            \bottomrule
        \end{tabular}
    \end{subtable}\hfill
    \begin{subtable}[b]{.22\linewidth}
        \centering
        \caption{Median value of $y_{1}$.}
        \begin{tabular}{lr}
            \toprule
            {} &    \multicolumn{1}{c}{$S_{1}$}  \\
            \midrule
            $\beta_{2}$    &  0.072321 \\
            $g_{12}$       &  0.002983 \\
            ${y_{1}}_{0}$  &  0.001799 \\
            $\omega_{22}$  &  0.001496 \\
            $\beta_{1}$    &  0.001112 \\
            ${y_{2}}_{0}$  &  0.000621 \\
            $x_{0}$        &  0.000278 \\
            $\omega_{11}$  &  0.000067 \\
            $\epsilon_{2}$ &  0.000046 \\
            $\epsilon_{1}$ & -0.000025 \\
            $\gamma_{12}$  & -0.000034 \\
            \bottomrule
        \end{tabular}
    \end{subtable}\hfill
    \begin{subtable}[b]{.22\linewidth}
        \centering
        \caption{Eqm. value of $y_{1}$.}
        \begin{tabular}{lr}
            \toprule
            {} &    \multicolumn{1}{c}{$S_{1}$}  \\
            \midrule
            $\beta_{2}$    &  0.070960 \\
            $g_{12}$       &  0.002951 \\
            ${y_{1}}_{0}$  &  0.001774 \\
            $\omega_{22}$  &  0.001540 \\
            $\beta_{1}$    &  0.001182 \\
            ${y_{2}}_{0}$  &  0.000605 \\
            $x_{0}$        &  0.000255 \\
            $\epsilon_{2}$ &  0.000077 \\
            $\omega_{11}$  &  0.000034 \\
            $\epsilon_{1}$ & -0.000012 \\
            $\gamma_{12}$  & -0.000020 \\
            \bottomrule
        \end{tabular}
    \end{subtable}
    \caption{Sesitivity of $y_{1}$.}
\end{table}

\subsubsection{ $y_{2}$}
\begin{table}[ht]
    \centering
    \begin{subtable}[b]{.22\linewidth}
        \centering
        \caption{Max value of $y_{2}$.}
        \begin{tabular}{lr}
            \toprule
            {} &    \multicolumn{1}{c}{$S_{1}$}  \\
            \midrule
            ${y_{2}}_{0}$  &  0.999839 \\
            $\omega_{22}$  &  0.000432 \\
            $\omega_{11}$  &  0.000172 \\
            $x_{0}$        &  0.000110 \\
            $\epsilon_{1}$ &  0.000104 \\
            $\gamma_{12}$  &  0.000063 \\
            $\epsilon_{2}$ &  0.000018 \\
            $g_{12}$       & -0.000060 \\
            $\beta_{1}$    & -0.000154 \\
            ${y_{1}}_{0}$  & -0.000164 \\
            $\beta_{2}$    & -0.000174 \\
            \bottomrule
        \end{tabular}
    \end{subtable}\hfill
    \begin{subtable}[b]{.22\linewidth}
        \centering
        \caption{Mean value of $y_{2}$.}
        \begin{tabular}{lr}
            \toprule
            {} &    \multicolumn{1}{c}{$S_{1}$}  \\
            \midrule
            $\beta_{2}$    &  0.078556 \\
            ${y_{2}}_{0}$  &  0.004368 \\
            $g_{12}$       &  0.003232 \\
            $\beta_{1}$    &  0.001764 \\
            $\omega_{22}$  &  0.001399 \\
            $\epsilon_{2}$ &  0.000124 \\
            $\gamma_{12}$  &  0.000072 \\
            $\omega_{11}$  &  0.000064 \\
            $x_{0}$        &  0.000063 \\
            ${y_{1}}_{0}$  & -0.000141 \\
            $\epsilon_{1}$ & -0.000146 \\
            \bottomrule
        \end{tabular}
    \end{subtable}\hfill
    \begin{subtable}[b]{.22\linewidth}
        \centering
        \caption{Median value of $y_{2}$.}
        \begin{tabular}{lr}
            \toprule
            {} &    \multicolumn{1}{c}{$S_{1}$}  \\
            \midrule
            $\beta_{2}$    &  0.075486 \\
            ${y_{2}}_{0}$  &  0.004046 \\
            $g_{12}$       &  0.003262 \\
            $\beta_{1}$    &  0.001588 \\
            $\omega_{22}$  &  0.001538 \\
            $\epsilon_{2}$ &  0.000075 \\
            $x_{0}$        &  0.000066 \\
            $\omega_{11}$  &  0.000063 \\
            $\gamma_{12}$  &  0.000061 \\
            ${y_{1}}_{0}$  & -0.000132 \\
            $\epsilon_{1}$ & -0.000144 \\
            \bottomrule
        \end{tabular}
    \end{subtable}\hfill
    \begin{subtable}[b]{.22\linewidth}
        \centering
        \caption{Eqm. value of $y_{2}$.}
        \begin{tabular}{lr}
            \toprule
            {} &   \multicolumn{1}{c}{$S_{1}$}  \\
            \midrule
            $\beta_{2}$    &  0.074109 \\
            ${y_{2}}_{0}$  &  0.003934 \\
            $g_{12}$       &  0.003281 \\
            $\beta_{1}$    &  0.001676 \\
            $\omega_{22}$  &  0.001576 \\
            $\epsilon_{2}$ &  0.000100 \\
            $\omega_{11}$  &  0.000069 \\
            $\gamma_{12}$  &  0.000043 \\
            $x_{0}$        &  0.000039 \\
            ${y_{1}}_{0}$  & -0.000113 \\
            $\epsilon_{1}$ & -0.000141 \\
            \bottomrule
        \end{tabular}
    \end{subtable}
    \caption{Sesitivity of $y_{2}$.}
\end{table}

\subsection{Delta Moment-Independent Measure}
\subsubsection{$x$}
\subsubsection{$y_{1}$}
\subsubsection{$y_{2}$}
\end{document}

上面的 MWE 在序言中仅考虑了与问题相关的打包。它给出了以下结果:

在此处输入图片描述

我希望所提出的解决方案也适用于您的实际文档。

相关内容