Latex 中手动修改目录

Latex 中手动修改目录

我在使用命令制作目录时遇到了麻烦。这\tableofcontents是我的长乳胶文件。

\documentclass[10pt,a4paper]{article}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{graphicx}
\usepackage{float}
\usepackage{caption}
\begin{document}
    \tableofcontents
    \newpage
    \section*{\Huge Chapter 1}
    \section*{\Large Symmetries in Classical Physics} 
    \subsection*{Introduction}
    Symmetries plays an important role in the fields of phsyics.
    \subsection{Mechanics of many particle System}
    Let us consider a system of more than 2 particles such that
    \begin{itemize}
    \item The external forces applied on the particles be say $F^{(ext)}_{i}$ and
    \item Forces applied by the system i.e. the interaction force be $F^{j}_{i}$
        \end{itemize}
    $\therefore$ From Newtons 2nd Law of motion, we can write\\
    \begin{equation}
    m_ia_i=\dot{p_i}=F^{(ext)}_{i}+\sum_{i \ne j}F^{j}_{i}, i=1,2,...N
    \end{equation}
    Where 'i' stands for denoting the particle and\\
    $F_{i}^{ext}$ stands for  external force acting on $i^{th}$ particle and\\
    $F^{j}_{i}$ is the interaction force acting on the $i^{th}$ particle due to all other paricle (i.e j particle).\\
    So $\therefore$ for N particles one can write it as \\
    \begin{equation*}
    \sum_{i \ne j}^{N}F^{j}_{i} ,where F_{i}^{i}=0.\end{equation*}
From Newtons 3rd law,one can write forces due to internal/interaction force as\\
\begin{equation}
F_{i}^{j}=-F_{j}^{i}.
\end{equation}
\section*{\large \boldmath Important points to be noted:}
\begin{itemize}
    \item Interacyion force is only possible iff there are more than on particles and bheave as an central force.
    \item Ad they occur in pair, forces among themselves are neglected.
\end{itemize}
For a closed system,where one knows that linear momentum is conserved i.e.external force acting on the system is zero.\\
$\implies$ A closed system can be reffered to as a inertial frame.\\
$\therefore$ From eq.(1) we have,\\
\begin{equation*}
\sum_i\dot{p_i}=\frac{d^2}{ dt^2}\sum_{i} m_{i}r_{i}=\sum_iF^{(ext)}_{i}+\sum_{i \ne j}F^{j}_{i}
\end{equation*}
\begin{equation*}
=\sum_{i}F_{i}^{ext}  
\end{equation*} where we have used eqn.(2).
\newpage
This is because \\
    As \begin{equation*}
    \sum_{i \ne j}F^{j}_{i}=\sum_{i \ne j}F^{i}_{j}
    \end{equation*}
    \begin{equation*}
    =\frac{1}{2}[\sum_{i \ne j}F^{j}_{i}+\sum_{i \ne j}F^{i}_{j}]=0 \text{(used dummy variable conncept)}
\end{equation*}
\begin{equation}
\implies\sum_{i}\dot{p_i} =  F^{(ext)}_{i}
    \end{equation}
To understand the physical significance of eqn.(1),using the concept of center of mass for many particles we have,\\
\begin{center}
    \begin{equation}
    \boldmath {R}=\frac{\sum_{i} m_{i}r_{i}}{\sum_{i}m_{i}} 
        \end{equation}
        \end{center}
where M=$\sum_{i} m_{i}$ is the total mass of the system.\\
$\therefore$ eqn.(3) become,\\
\begin{equation}
M\frac{d^2R}{dt^2} = \sum_{i}F_{i}^{ext}=F^{ext}
\end{equation}
 \begin{equation*}\textbf{P}=\sum_{i} m_{i}r_{i}=\frac{d}{dt}\sum_{i} m_{i}r_{i}=M\dot{\textbf{R}}
\end{equation*}
\section*{Conservation Laws}
\subsection{Linear momentum}
Frome eqn.(5) we have\\
\begin{equation*}\textbf{P}=\sum_{i} m_{i}r_{i}=\frac{d}{dt}\sum_{i} m_{i}r_{i}=M\dot{\textbf{R}}
\end{equation*}
\textbf{Important points}
\begin{itemize}
    \item Applying the external force on the entire mass of the system, the C.O.M move along too.
    \item If $F^{ext}$=0,then the total linear momentum is conserved.\\
    i.e $\frac{d\textbf{P}}{dt}$=0 $\implies$ $\textbf{P}$=constant of motion.\\
    $\implies$ C.O.M moves with cobstant/uniform velocity without the extrnal force.\\ 
\end{itemize}
We can relate this scenario by the radioactive decay nucleus disintegrating ejects different particles which move in different direction in such a way that C.O.M moves along with constant velocity after disnitegration.\\
\subsection{Conservation of angular momentum}
Angular momentum for the system of particles is written as:-\\
\begin{equation*}
    \textbf{L}=\sum_{i}r_{i} \times p_{i}
\end{equation*}
\begin{equation*}
\dot{\textbf{L}}=\sum_{i}(r_{i} \times \dot{p_{i}}+\dot{r_{i}} \times p_{i})
\end{equation*}
\begin{equation*}
\dot{\textbf{L}}=\sum_{i}r_{i} \times \dot{p_{i}}  (\because \dot{r_{i}} \times p_{i}=0)
\end{equation*}
\begin{equation*}
\dot{\textbf{L}}=r_{i} \times(\sum_{i}F^(ext)_i)+\sum_{i \ne j} F^{j}_{i}
\end{equation*}
\begin{equation}
\frac{d\dot{L}}{dt}=\sum_{i}r_{i} \times F^{(ext)}_{i}+\sum_{i \ne j}r_{i} \times F^{j}_{i}
\end{equation}
where 1st term represnts total torque due to external forces and 2nd term represents total torque due to internal forces.\\
Now one can easily prove that 2nd term in eqn.(6) is zero.\\
\textbf{Proof}:-Let $N_{i}$ be the sum of all internal torque acting on the system i.e.,\\
\begin{equation*} N_{i}=\sum_{i\ne j} r_{i} \times F_{i}^{j}=\sum_{i\ne j} r_{j} \times F_{i}^{j} \text{()used dummy varialble concept} \end{equation*}
\begin{equation*}
N_{i}=\frac{1}{2}\sum_{i \ne j} [ r_{i} \times F_{i}^{j}+ r_{j} \times F_{i}^{j}]
\end{equation*}
\begin{equation*}
\text{Now as}  F_{i}^{j}= -F_{j}^{i}
\end{equation*}
\begin{equation*}
N_{i}=\frac{1}{2}\sum_{i \ne j}  (r_{i}-r_{j}) \times F_{i}^{j}
\end{equation*}
\begin{equation*}
r_{ij}=r_{i}-r_{j}
\end{equation*}
\begin{equation*}
\implies N_{int}=\frac{1}{2} \times r_{ij} \times F^{j}_{i}
\end{equation*}
From the figure below one can see that $r_{ij} \times F^{j}_{i}$=0; $\because$ $r_{ij}$ of particle $i^{th}$ and $j^{th}$ are parallel to the line of action of $F^{j}_{i}$.
\begin{figure}[H]
    \centering
    \includegraphics[width=1.2\linewidth]{IMG_20200426_202229}
    \caption*{Representation of $i_{th}$ and $j_{th}$ particles }
    \label{fig:img20200426202229}
\end{figure}
\begin{equation*}
\implies\bf{ \frac{dL}{dt}=\sum_{i} r_{i} \times F_{i}^{ext}=N^{ext}}=\text{Sum of external torques}
\end{equation*}
Now if $N^{ext}$=0 $\implies$ \text{\textbf{'L'} is aconstant of motion and thus angular momentum is conserved}.
\subsection{Conservation of Energy} 



    \end{document}

据我所知,section命令会自动在目录中添加标题,但是我\section*{}看到它并不包括这些,而且当我在许多页面中创建section时,使其在目录中变得粗体和大,它也会变大,但我想手动进行修改。任何人都可以提供帮助(并且当我在pdf中预览它时,我看到我的整个书面文本并且居中并且不会占用整个页面,这可能是由于默认边距问题)。

答案1

在我看来,您正在利用article阶级来制造假\chapter分裂。

但是,要将其\section*{text}插入到目录中,请执行以下操作:

\section*{Section title}
\addcontentsline{toc}{section}{Section title}

对于小节\addcontentsline{toc}{subsection}{Subsection title}等等同样如此。

请注意,您的部门编号方案是 0.n。

这可能工作量很大,但我建议您使用提供诸如bookreport(和memoir的超集)等章节的类。以下是修订代码的可能开始。bookreport

% sectocprob.tex  SE 543098 section* in ToC
\documentclass[10pt,a4paper]{memoir}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{graphicx}
\usepackage{float}
\usepackage{caption}
\begin{document}
    \tableofcontents
%    \newpage
%    \section*{\Huge Chapter 1}
%\addcontentsline{toc}{section}{Chapter 1}
    \chapter{Large Symmetries in Classical Physics}
%    \section*{\Large Symmetries in Classical Physics} 
%    \subsection*{Introduction}
    \section{Introduction}
    Symmetries plays an important role in the fields of phsyics.
%    \subsection{Mechanics of many particle System}
    \section{Mechanics of many particle System}
    Let us consider a system of more than 2 particles such that
    \begin{itemize}
    \item The external forces applied on the particles be say $F^{(ext)}_{i}$ and
    \item Forces applied by the system i.e. the interaction force be $F^{j}_{i}$
        \end{itemize}
    $\therefore$ From Newtons 2nd Law of motion, we can write\\
    \begin{equation}
    m_ia_i=\dot{p_i}=F^{(ext)}_{i}+\sum_{i \ne j}F^{j}_{i}, i=1,2,...N
    \end{equation}
    Where 'i' stands for denoting the particle and\\
    $F_{i}^{ext}$ stands for  external force acting on $i^{th}$ particle and\\
    $F^{j}_{i}$ is the interaction force acting on the $i^{th}$ particle due to all other paricle (i.e j particle).\\
    So $\therefore$ for N particles one can write it as \\
    \begin{equation*}
    \sum_{i \ne j}^{N}F^{j}_{i} ,where F_{i}^{i}=0.\end{equation*}
From Newtons 3rd law,one can write forces due to internal/interaction force as\\
\begin{equation}
F_{i}^{j}=-F_{j}^{i}.
\end{equation}
\end{document}

尝试上述方法,看看它是否接近你想要的(我对此非常不清楚)。

相关内容