我尝试使用以下方法获取矩阵的特征值
sagemath;
sage: var('a b c d e f g h i j k l m n p q r s t u v')
(a, b, c, d, e, f, g, h, i, j, k, l, m, n, p, q, r, s, t, u, v)
sage: m = matrix([[-a, 0, 0, 0, m, 0, 0,0, -u], [0, -c, 0, 0, 0, 0, 0, 0, u], [0, d, -g, 0, 0, 0, 0, 0, 0], [0, 0, h, -k, 0, 0, 0, 0, 0], [b, e, i, l, -n, 0, 0, 0, 0], [0, f, j, 0, 0, -p, 0, 0, 0], [0, 0, 0, 0, 0, -q, -r, 0, 0], [0, 0, 0, 0, 0, q, 0, -s, 0], [0, 0, 0, 0, 0, 0, 0, t, -v]])
sage: m_evals = m.eigenvalues()
sage: m_evals
这是它打印出来的结果,但我不明白
︡f7d40c48-e770-4439-bd82-e8d94f37acb8︡{"stdout":"(a, b, c, d, e, f, g, h, i, j, k, l, m, n, p, q, r, s, t, u, v)"}︡{"stdout":"\n"}︡{"stdout":"(a, b, c, d, e, f, g, h, i, j, k, l, m, n, p, q, r, s, t, u, v)\n"}︡{"stdout":"[-1/2*a - 1/2*n - 1/2*sqrt(a^2 + 4*b*m - 2*a*n + n^2), -1/2*a - 1/2*n + 1/2*sqrt(a^2 + 4*b*m - 2*a*n + n^2), -r, -k]\n"}︡{"done":true}