在解决边界值问题时,我得到了两个系数,即使经过简化,它们仍然很大。我有 Latex 代码数学我尝试复制粘贴背页以及一个名为“MathJax”的编辑器堆栈编辑。系数是分数形式,很容易溢出页面。因此,我尝试分别更改分子和分母中的行,但\\
在上述两个编辑器中均无法正常工作。代码如下:
\begin{equation}
\frac{32 e^{w \gamma } \left(e^{-w \gamma } \delta \sin \left(\frac{\alpha }{2}\right) \sin \left(\frac{\alpha }{2}+\beta \right) (2 \delta +\sin (2 \theta )-\sin (2 \lambda )) p_c \left(t_{\text{ci}}-T_a\right) \left(\delta \left(e^{\beta _c} \cos (\theta )-\cos (\lambda )\right)+\left(e^{\beta _c} \sin (\theta )-\sin (\lambda )\right) \beta _c\right) \left(\delta ^2+\beta _c^2\right) \left(e^{\beta _h} \gamma (2 \alpha +\sin (2 \beta )-\sin (2 \kappa )) \left(\alpha ^2+\beta _h^2\right){}^2+\alpha p_h \left(-2 e^{\beta _h} (\alpha +\cos (\beta ) \sin (\beta )-\cos (\kappa ) \sin (\kappa )) \alpha ^3+\left(-2 \cos (\alpha )+2 e^{\beta _h}+e^{\beta _h} \cos (2 \beta )-2 \cos (\alpha +2 \beta )+e^{\beta _h} \cos (2 \kappa )\right) \beta _h \alpha ^2-2 \left(2 \sin (\alpha )+e^{\beta _h} (\alpha +\cos (\beta ) \sin (\beta )-\cos (\kappa ) \sin (\kappa ))\right) \beta _h^2 \alpha +\left(2 \cos (\alpha )-2 e^{\beta _h}+e^{\beta _h} \cos (2 \beta )-2 \cos (\alpha +2 \beta )+e^{\beta _h} \cos (2 \kappa )\right) \beta _h^3\right)\right)-\alpha \sin \left(\frac{\delta }{2}\right) \sin \left(\frac{\delta }{2}+\theta \right) (2 \alpha +\sin (2 \beta )-\sin (2 \kappa )) p_h \left(T_a-t_{\text{hi}}\right) \left(e^{\beta _c} \gamma (2 \delta +\sin (2 \theta )-\sin (2 \lambda )) \left(\delta ^2+\beta _c^2\right){}^2-\delta p_c \left(-2 e^{\beta _c} (\delta +\cos (\theta ) \sin (\theta )-\cos (\lambda ) \sin (\lambda )) \delta ^3+\left(-2 \cos (\delta )+2 e^{\beta _c}+e^{\beta _c} \cos (2 \theta )-2 \cos (\delta +2 \theta )+e^{\beta _c} \cos (2 \lambda )\right) \beta _c \delta ^2-2 \left(2 \sin (\delta )+e^{\beta _c} (\delta +\cos (\theta ) \sin (\theta )-\cos (\lambda ) \sin (\lambda ))\right) \beta _c^2 \delta +\left(2 \cos (\delta )-2 e^{\beta _c}+e^{\beta _c} \cos (2 \theta )-2 \cos (\delta +2 \theta )+e^{\beta _c} \cos (2 \lambda )\right) \beta _c^3\right)\right) \left(\alpha \left(e^{\beta _h} \cos (\beta )-\cos (\kappa )\right)+\left(e^{\beta _h} \sin (\beta )-\sin (\kappa )\right) \beta _h\right) \left(\alpha ^2+\beta _h^2\right)\right)}{(2 \alpha +\sin (2 \beta )-\sin (2 \kappa )) (2 \delta +\sin (2 \theta )-\sin (2 \lambda )) \left(e^{2 w \gamma } \left(e^{\beta _c} \gamma (2 \delta +\sin (2 \theta )-\sin (2 \lambda )) \left(\delta ^2+\beta _c^2\right){}^2-\delta p_c \left(-2 e^{\beta _c} (\delta +\cos (\theta ) \sin (\theta )-\cos (\lambda ) \sin (\lambda )) \delta ^3+\left(-2 \cos (\delta )+2 e^{\beta _c}+e^{\beta _c} \cos (2 \theta )-2 \cos (\delta +2 \theta )+e^{\beta _c} \cos (2 \lambda )\right) \beta _c \delta ^2-2 \left(2 \sin (\delta )+e^{\beta _c} (\delta +\cos (\theta ) \sin (\theta )-\cos (\lambda ) \sin (\lambda ))\right) \beta _c^2 \delta +\left(2 \cos (\delta )-2 e^{\beta _c}+e^{\beta _c} \cos (2 \theta )-2 \cos (\delta +2 \theta )+e^{\beta _c} \cos (2 \lambda )\right) \beta _c^3\right)\right) \left(e^{\beta _h} \gamma (2 \alpha +\sin (2 \beta )-\sin (2 \kappa )) \left(\alpha ^2+\beta _h^2\right){}^2-\alpha p_h \left(-2 e^{\beta _h} (\alpha +\cos (\beta ) \sin (\beta )-\cos (\kappa ) \sin (\kappa )) \alpha ^3+\left(-2 \cos (\alpha )+2 e^{\beta _h}+e^{\beta _h} \cos (2 \beta )-2 \cos (\alpha +2 \beta )+e^{\beta _h} \cos (2 \kappa )\right) \beta _h \alpha ^2-2 \left(2 \sin (\alpha )+e^{\beta _h} (\alpha +\cos (\beta ) \sin (\beta )-\cos (\kappa ) \sin (\kappa ))\right) \beta _h^2 \alpha +\left(2 \cos (\alpha )-2 e^{\beta _h}+e^{\beta _h} \cos (2 \beta )-2 \cos (\alpha +2 \beta )+e^{\beta _h} \cos (2 \kappa )\right) \beta _h^3\right)\right)-\left(e^{\beta _c} \gamma (2 \delta +\sin (2 \theta )-\sin (2 \lambda )) \left(\delta ^2+\beta _c^2\right){}^2+\delta p_c \left(-2 e^{\beta _c} (\delta +\cos (\theta ) \sin (\theta )-\cos (\lambda ) \sin (\lambda )) \delta ^3+\left(-2 \cos (\delta )+2 e^{\beta _c}+e^{\beta _c} \cos (2 \theta )-2 \cos (\delta +2 \theta )+e^{\beta _c} \cos (2 \lambda )\right) \beta _c \delta ^2-2 \left(2 \sin (\delta )+e^{\beta _c} (\delta +\cos (\theta ) \sin (\theta )-\cos (\lambda ) \sin (\lambda ))\right) \beta _c^2 \delta +\left(2 \cos (\delta )-2 e^{\beta _c}+e^{\beta _c} \cos (2 \theta )-2 \cos (\delta +2 \theta )+e^{\beta _c} \cos (2 \lambda )\right) \beta _c^3\right)\right) \left(e^{\beta _h} \gamma (2 \alpha +\sin (2 \beta )-\sin (2 \kappa )) \left(\alpha ^2+\beta _h^2\right){}^2+\alpha p_h \left(-2 e^{\beta _h} (\alpha +\cos (\beta ) \sin (\beta )-\cos (\kappa ) \sin (\kappa )) \alpha ^3+\left(-2 \cos (\alpha )+2 e^{\beta _h}+e^{\beta _h} \cos (2 \beta )-2 \cos (\alpha +2 \beta )+e^{\beta _h} \cos (2 \kappa )\right) \beta _h \alpha ^2-2 \left(2 \sin (\alpha )+e^{\beta _h} (\alpha +\cos (\beta ) \sin (\beta )-\cos (\kappa ) \sin (\kappa ))\right) \beta _h^2 \alpha +\left(2 \cos (\alpha )-2 e^{\beta _h}+e^{\beta _h} \cos (2 \beta )-2 \cos (\alpha +2 \beta )+e^{\beta _h} \cos (2 \kappa )\right) \beta _h^3\right)\right)\right)}
\end{equation}
有人可以看看这个问题并提出一些解决方法吗?