答案1
请查看是否符合要求
\documentclass{standalone}
\usepackage{tikz}
\usetikzlibrary{calc,positioning,angles,arrows.meta,quotes,intersections}
\usetikzlibrary{through}
\begin{document}
\begin{tikzpicture}[declare function={alpha=60; beta=75; sigma=110;}]
\path (0,0) coordinate (A)node[below]{A} -- ++ (alpha:7cm) coordinate
(B)node[above]{B} --
([turn]alpha:-7cm) coordinate (C)node[below]{C};
\draw(A)--(B)--(C)--cycle;
\coordinate (D) at ($(A)!(B)!(C)$);
\draw[gray!50,dashed] (B)--(D);
\coordinate (E) at ($(C)!(A)!(B)$);
\draw[gray!50,dashed] (A)--(E);
\coordinate (F) at (intersection of B--D and A--E) ;
\node[fill=red,inner sep=1pt, circle] at(F){};
\node [draw,blue,thick,name path=circle,](c) at (F) [circle through={(A)}]
{};
\pic[ draw,<->,>=stealth,blue, "$60^0$"{fill=white},inner sep=1pt, circle,
draw,angle
eccentricity=1.1, angle radius = 10mm] {angle = C--A--B};
\pic[ draw,<->,>=stealth,blue, "$60^0$"{fill=white},inner sep=1pt, circle,
draw,angle
eccentricity=1.1, angle radius = 10mm] {angle = B--C--A};
\draw[line width=0.5pt] (0,-10mm) -- (0,2mm);
\draw[line width=0.5pt] (7cm,-10mm) -- (7cm,2mm);
\draw[<->,>=stealth,](0,-8mm) --node[midway,fill=white](){7cm}(7cm,-8mm);
\coordinate (G) at (0,5);
\path[name path=fg] (F)--(G);
\path [name intersections ={of=fg and circle,name=i}](i-1) coordinate [];
\draw [->,>=stealth,](F)--node[pos=0.7,fill=white,sloped]{radius}(i-1);
\end{tikzpicture}
\end{document}
编辑——添加了另一个带有 tkz euclide 的选项
\documentclass{article} % or another class
\usepackage{xcolor} % before tikz or tkz-euclide if necessary
\usepackage{tkz-euclide} % no need to load TikZ
\usetikzlibrary{babel} %if there are problems with the active characters
\begin{document}
\noindent\hspace{-4.5cm}
\begin{tikzpicture}
%equilateral triangle
\tkzDefPoint(0,0){A}
\tkzDefPoint(7,0){B}
%draw intersecting circles
\tkzInterCC(A,B)(B,A)\tkzGetPoints{C}{D}
\tkzDrawPoints[color=red](A,B,C)
\tkzDrawCircle[dashed, color=blue](A,B)
\tkzDrawCircle[dashed, color=blue](B,A)
\tkzCompass[color=blue,line width=2pt](A,C)
\tkzCompass[color=blue,line width=2pt](B,C)
%draw triangle
\tkzDrawPolygon[color=red, ](A,B,C)
\tkzMarkSegments[mark=s|,color=blue](A,C B,C)
\tkzLabelPoints[](A,B)
\tkzLabelPoints[above](C)
%circumscribed circle
\tkzDefMidPoint(A,B)\tkzGetPoint{P}
\tkzLabelPoints[](P)
\tkzDefLine[orthogonal =through P](A,B)\tkzGetPoint{X}
\tkzLabelPoints(X)
%orthogonal midpoints of two sides
\tkzDefMidPoint(B,C)\tkzGetPoint{Q}
\tkzLabelPoints[](Q)
\tkzDefLine[orthogonal =through Q](B,C)\tkzGetPoint{Y}
\tkzLabelPoints(Y)
%mark right angles
\tkzDrawLines[dashed,green](P,X Q,Y)
\tkzMarkRightAngles(B,Q,Y A,P,X)
%find center of circumscribe circle
\tkzInterLL(P,X)(Q,Y)\tkzGetPoint{Z}
\tkzLabelPoints(Z)
\tkzDrawPoint[green](Z)
%calculate radius of circum circle
\tkzCalcLength[cm](Z,A)\tkzGetLength{rZA}
\tkzDrawCircle[green!50!black,line width=2pt,R ](Z, \rZA cm)
%mark all three angles of equilateral triangle
\tkzMarkAngle[size=1cm,color=cyan,mark=||](B,A,C)
\tkzMarkAngle[size=1cm,color=cyan,mark=||](A,C,B)
\tkzMarkAngle[size=1cm,color=cyan,mark=||](C,B,A)
%find the angle of eq triangle
\tkzFindAngle(B,A,C)
\tkzGetAngle{angleBAC}
\edef\angleBAC{\fpeval{round(\angleBAC)}}
\tkzLabelAngle[pos=0.7](B,A,C){\angleBAC$^\circ$}
%draw radius of the circum circle
\tkzDefShiftPoint[Z](135:\rZA){z}
\tkzDrawSegments[arrows=-stealth](Z,z)
\tkzLabelLine[pos=0.7,black,rotate=-45,fill=white](Z,z){radius}
\end{tikzpicture}
\end{document}
答案2
我假设 c、alpha 和 beta 已知;然后:
新的更简单的答案:
\documentclass[margin=5pt, tikz]{standalone}
\usepackage{tikz}
\usetikzlibrary{calc}
\usetikzlibrary{intersections}
\usetikzlibrary{backgrounds}
\usetikzlibrary{patterns}
\usetikzlibrary{positioning}
\usetikzlibrary{angles, quotes, babel}
\usepackage{amsmath, amssymb}
\begin{document}
% Gegebene Größen
\pgfmathsetmacro{\c}{7}
\pgfmathsetmacro{\Alpha}{60}
\pgfmathsetmacro{\Beta}{60}
% Seitenlängen
\pgfmathsetmacro{\Gamma}{180-\Alpha-\Beta}
\pgfmathsetmacro{\a}{\c*sin(\Alpha)/sin(\Gamma)} %
\pgfmathsetmacro{\b}{sqrt(\a*\a +\c*\c -2*\a*\c*cos(\Beta))} %
\pgfmathsetmacro{\R}{\a/(2*sin(\Alpha))} %
\pgfmathsetmacro{\McU}{\R*abs(cos(\Gamma))} %
\begin{tikzpicture}[%scale=0.7,
font=\footnotesize,
]
% Dreieckskonstruktion
%\pgfmathsetmacro{\Alpha}{acos((\b^2+\c^2-\a^2)/(2*\b*\c))} %
\coordinate[label=below:$A$] (A) at (0,0);
\coordinate[label=below:$B$] (B) at (\c,0);
\coordinate[label=$C$] (C) at (\Alpha:\b);
\draw[local bounding box=dreieck] (A) -- (B) -- (C) --cycle;
% Umkreis
\draw[red] ($(A)!0.5!(B)$) coordinate[label=-90:$M_c$] (Mc) -- +(90:\McU) coordinate[label=110:$U$](U) node[midway, right] {$|M_cU|$};
\draw[densely dashed, red] (U) -- (A) node[midway, above] {$R$};;
\draw[] (U) circle[radius=\R];
\draw pic [angle radius=3mm, %angle eccentricity=1.2,
draw, "$\cdot$", red
] {angle =U--Mc--A};
% Annotationen - Dreieck
\draw[thick] (A) -- (B) node[pos=0.25, below]{$c/2$} node[pos=0.75, below]{$c/2$};
\draw pic [angle radius=6mm, %angle eccentricity=1.2,
draw, "$\alpha$", thick
] {angle =B--A--C};
\draw pic [angle radius=6mm, %angle eccentricity=1.2,
draw, "$\beta$", thick
] {angle =C--B--A};
\draw[-latex] (U) -- +(44:\R) node[near end, above]{$R$};
% Annotationen - Aufgabe
\pgfmathsetmacro{\x}{max(\a, \b,\c)} %
\begin{scope}[shift={($(dreieck.north west)+(-\x cm-3mm,0)$)}]
% Strecken
\foreach[count=\y from 0] \s/\S in {c/c}{%%
\draw[|-|, yshift=-\y*5mm, local bounding box=strecken] (0,0) -- (\csname \s \endcsname,0) node[midway, above]{$\S$ %= \csname \s \endcsname cm
};}%%
\end{scope}
% Winkel
\pgfmathsetmacro{\Winkel}{\Alpha}
\pgfmathsetmacro{\WinkelXShift}{\Winkel > 90 ? -cos(\Winkel) : 0} %
\draw[shift={($(strecken.south west)+(\WinkelXShift,50mm)$)}] (\Winkel:1) coordinate(P) -- (0,0) coordinate(Q) -- (1,0) coordinate(R);
\draw pic [draw, angle radius=7mm, %angle eccentricity=1.3,
% pic text={$\Winkel$}, pic text options={},
"$\alpha$",
] {angle =R--Q--P};
% Winkel 2
\pgfmathsetmacro{\Winkel}{\Beta}
\pgfmathsetmacro{\WinkelXShift}{\Winkel > 90 ? -cos(\Winkel) : 0} %
\draw[shift={($(strecken.south west)+(15mm+\WinkelXShift,50mm)$)}] (\Winkel:1) coordinate(P) -- (0,0) coordinate(Q) -- (1,0) coordinate(R);
\draw pic [draw, angle radius=7mm, %angle eccentricity=1.3,
% pic text={$\Winkel$}, pic text options={},
"$\beta$",
] {angle =R--Q--P};
% Annotationen - Rechnung
\tikzset{PosUnten/.style={below=5mm of dreieck, anchor=north,}}
\tikzset{PosLinks/.style={shift={($(dreieck.north)+(-44mm,-17mm)$)}, anchor=north east,}}
\node[yshift=-0mm, draw, align=left, fill=lightgray!50,
%PosUnten,
PosLinks,
] (Rechnung){
$\begin{array}{l l}
c = \c \text{ cm} & \\
\alpha = \Alpha^\circ & \\
\beta = \Beta^\circ & \\ \hline
\gamma = 180^\circ-\alpha-\beta &=\Gamma^\circ \\
a = c\cdot\dfrac{\sin(\alpha)}{\sin(\gamma)} & =\a \text{ cm} \\[1em]
b = \sqrt{a^2+c^2-2ac\cos(\beta)} & =\b \text{ cm} \\
R = \dfrac{a}{2\sin(\alpha)} &=\R \text{ cm} \\[1em]
|M_cU| = R|\cos(\gamma)| &=\McU \text{ cm} \\
\end{array}$
};
\node[anchor=north west, yshift=-3mm, inner sep=0pt, draw=none] at (Rechnung.south west){
$\begin{array}{l l}
\text{Hint: } |M_cU|^2 \hspace{-3mm}& =R^2-\left(\dfrac{c}{2}\right)^2
= R^2 - \bigl( R \sin (\gamma)\bigr)^2 \\[0.75em]
&= R^2 \bigl(1-\sin^2(\gamma) \bigr) =R^2\cos^2(\gamma)\\[1em]
\multicolumn{2}{l}{\Rightarrow |M_cU| = R|\cos(\gamma)|}
\end{array}$
};
%% Punkte
\foreach \P in {U, Mc}
\draw[fill=black!1, draw=red] (\P) circle (1.75pt);
\end{tikzpicture}
\end{document}
老旧,太复杂,答案:
暗示:从边长和角点到外接圆中心点(U)的矢量计算方式
\pgfmathsetmacro{\Da}{\a^2*(\b^2+\c^2-\a^2)} %
\pgfmathsetmacro{\Db}{\b^2*(\a^2+\c^2-\b^2)} %
\pgfmathsetmacro{\Dc}{\c^2*(\a^2+\b^2-\c^2)} %
\pgfmathsetmacro{\D}{\Da+\Db+\Dc} %
\pgfmathsetmacro{\au}{\Da/\D} %
\pgfmathsetmacro{\bu}{\Db/\D} %
\pgfmathsetmacro{\cu}{\Dc/\D} %
\coordinate[] (U) at ($\au*(A)+\bu*(B)+\cu*(C)$);
位于维基百科。
平均能量损失:
\documentclass[margin=5pt, tikz]{standalone}
\usepackage{tikz}
\usetikzlibrary{calc}
\usetikzlibrary{intersections}
\usetikzlibrary{backgrounds}
\usetikzlibrary{patterns}
\usetikzlibrary{positioning}
\usetikzlibrary{angles, quotes, babel}
\usepackage{amsmath, amssymb}
\begin{document}
% Gegebene Größen
\pgfmathsetmacro{\c}{7}
\pgfmathsetmacro{\Alpha}{60}
\pgfmathsetmacro{\Beta}{60}
% Seitenlängen
\pgfmathsetmacro{\Gamma}{180-\Alpha-\Beta}
\pgfmathsetmacro{\a}{\c*sin(\Alpha)/sin(\Gamma)} %
\pgfmathsetmacro{\b}{sqrt(\a*\a +\c*\c -2*\a*\c*cos(\Beta))} %
\pgfkeys{/tikz/savevalue/.code 2 args={\global\edef#1{#2}}}
\begin{tikzpicture}[%scale=0.7,
font=\footnotesize,
background rectangle/.style={draw=none, fill=black!1, rounded corners}, show background rectangle,
Punkt/.style 2 args={ label={[#1]:$#2$} },
Dreieck/.style={thick},
]
% Dreieckskonstruktion
%\pgfmathsetmacro{\Alpha}{acos((\b^2+\c^2-\a^2)/(2*\b*\c))} %
\coordinate[Punkt={below}{A}] (A) at (0,0);
\coordinate[Punkt={below}{B}] (B) at (\c,0);
\coordinate[Punkt={above}{C}] (C) at (\Alpha:\b);
\draw[local bounding box=dreieck] (A) -- (B) -- (C) --cycle; % Dreieck zeichnen
% Umkreis
\pgfmathsetmacro{\s}{0.5*(\a+\b+\c)} %
\pgfmathsetmacro{\F}{sqrt(\s*(\s-\a)*(\s-\b)*(\s-\c))} %
\pgfmathsetmacro{\Da}{\a^2*(\b^2+\c^2-\a^2)} %
\pgfmathsetmacro{\Db}{\b^2*(\a^2+\c^2-\b^2)} %
\pgfmathsetmacro{\Dc}{\c^2*(\a^2+\b^2-\c^2)} %
\pgfmathsetmacro{\D}{\Da+\Db+\Dc} %
\pgfmathsetmacro{\au}{\Da/\D} %
\pgfmathsetmacro{\bu}{\Db/\D} %
\pgfmathsetmacro{\cu}{\Dc/\D} %
\coordinate[Punkt={below}{U}] (U) at ($\au*(A)+\bu*(B)+\cu*(C)$);
\pgfmathsetmacro{\R}{(\a*\b*\c)/(4*\F)} %
\draw[] (U) circle[radius=\R];
% Annotationen - Dreieck
\draw[thick] (A) -- (B) node[midway, below]{$c$};
\draw pic [angle radius=6mm, %angle eccentricity=1.2,
draw, "$\alpha$", thick
] {angle =B--A--C};
\draw pic [angle radius=6mm, %angle eccentricity=1.2,
draw, "$\beta$", thick
] {angle =C--B--A};
\draw[-latex] (U) -- +(33:\R) node[near end, above]{$R$};
% Annotationen - Aufgabe
\pgfmathsetmacro{\x}{max(\a, \b,\c)} %
\begin{scope}[shift={($(dreieck.north west)+(-\x cm-3mm,0)$)}]
% Strecken
\foreach[count=\y from 0] \s/\S in {c/c}{%%
\draw[|-|, yshift=-\y*5mm, local bounding box=strecken] (0,0) -- (\csname \s \endcsname,0) node[midway, above]{$\S$ %= \csname \s \endcsname cm
};}%%
\end{scope}
% Winkel
\pgfmathsetmacro{\Winkel}{\Alpha}
\pgfmathsetmacro{\WinkelXShift}{\Winkel > 90 ? -cos(\Winkel) : 0} %
\draw[shift={($(strecken.south west)+(\WinkelXShift,50mm)$)}] (\Winkel:1) coordinate(P) -- (0,0) coordinate(Q) -- (1,0) coordinate(R);
\draw pic [draw, angle radius=7mm, %angle eccentricity=1.3,
% pic text={$\Winkel$}, pic text options={},
"$\alpha$",
] {angle =R--Q--P};
% Winkel 2
\pgfmathsetmacro{\Winkel}{\Beta}
\pgfmathsetmacro{\WinkelXShift}{\Winkel > 90 ? -cos(\Winkel) : 0} %
\draw[shift={($(strecken.south west)+(15mm+\WinkelXShift,50mm)$)}] (\Winkel:1) coordinate(P) -- (0,0) coordinate(Q) -- (1,0) coordinate(R);
\draw pic [draw, angle radius=7mm, %angle eccentricity=1.3,
% pic text={$\Winkel$}, pic text options={},
"$\beta$",
] {angle =R--Q--P};
% Annotationen - Rechnung
\tikzset{PosUnten/.style={below=5mm of dreieck, anchor=north,}}
\tikzset{PosLinks/.style={shift={($(dreieck.north)+(-44mm,-20mm)$)}, anchor=north east,}}
\node[yshift=-0mm, draw, align=left, fill=lightgray!50,
%PosUnten,
PosLinks,
]{
$\begin{array}{l l}
c = \c \text{ cm} & \\
\alpha = \Alpha^\circ & \\
\beta = \Beta^\circ & \\ \hline
\gamma = 180^\circ-\alpha-\beta &=\Gamma^\circ \\
a = c\cdot\dfrac{\sin(\alpha)}{\sin(\gamma)} & =\a \text{ cm} \\[1em]
b = \sqrt{a^2+c^2-2ac\cos(\beta)} & =\b \text{ cm} \\
R = \dfrac{a}{2\sin(\alpha)} &=\R \text{ cm} \\
%\beta = \Beta^\circ & (5) \\
%\gamma = \Gamma^\circ & (2) \\
%\multicolumn{2}{l}{s_{a, \text{max}} = \saMax \text{ cm}} \\
\end{array}$
};
%% Punkte
\foreach \P in {U}
\draw[fill=black!1, draw=red] (\P) circle (1.75pt);
\end{tikzpicture}
\end{document}