在以下情况下,我想在非连续行上垂直对齐标记为 (H) 和 (NH) 的方程式中的等号=
(以便稍后使用 引用它们)。我该怎么做?\eqref
进入的方式这里以后无法使用\eqred
。
\documentclass[12pt]{article}
\usepackage{amsmath,amsthm,amssymb}
\begin{document}
Consider the {\itshape homogeneous} linear differential equation
\begin{equation}
\tag{H}
\label{eq:H2}
y''+p(x)y'+q(x)y=0
\end{equation}
and {\itshape nonhomogeneous} linear differential equation
\begin{equation}
\tag{NH}
\label{eq:NH2}
y''+p(x)y'+q(x)y=f(x)
\end{equation}
where $p(\cdot)$, $q(\cdot)$, and $f(\cdot)$ be continuous functions on some open interval $(a,b)$. The homogeneous equation \eqref{eq:H2} always have a solution $y=0$ called {\itshape the trivial solution}.
\end{document}
答案1
align
与 一起使用\intertext
( 的两个功能amsmath
)
\documentclass[12pt]{article}
\usepackage{amsmath,amsthm,amssymb}
\begin{document}
Consider the \textit{homogeneous} linear differential equation
\begin{align}
\tag{H}
\label{eq:H2}
y''+p(x)y'+q(x)y &= 0
\intertext{and \textit{nonhomogeneous} linear differential equation}
\tag{NH}
\label{eq:NH2}
y''+p(x)y'+q(x)y &= f(x)
\end{align}
where $p(\cdot)$, $q(\cdot)$, and $f(\cdot)$ be continuous functions on some
open interval $(a,b)$. The homogeneous equation \eqref{eq:H2} always have a
solution $y=0$ called \textit{the trivial solution}.
\end{document}
(我用 代替{\itshape...}
了\textit{...}
,但这只是我的口味。)