在非连续行上垂直对齐几个标记的方程式(稍后可以引用)

在非连续行上垂直对齐几个标记的方程式(稍后可以引用)

在以下情况下,我想在非连续行上垂直对齐标记为 (H) 和 (NH) 的方程式中的等号=(以便稍后使用 引用它们)。我该怎么做?\eqref

进入的方式这里以后无法使用\eqred

在此处输入图片描述

\documentclass[12pt]{article}
\usepackage{amsmath,amsthm,amssymb}
\begin{document}
Consider the {\itshape homogeneous} linear differential equation
\begin{equation}
    \tag{H}
    \label{eq:H2}
    y''+p(x)y'+q(x)y=0
\end{equation}
and {\itshape nonhomogeneous} linear differential equation
\begin{equation}
    \tag{NH}
    \label{eq:NH2}
    y''+p(x)y'+q(x)y=f(x)
\end{equation}
where $p(\cdot)$, $q(\cdot)$, and $f(\cdot)$ be continuous functions on some open interval $(a,b)$. The homogeneous equation \eqref{eq:H2} always have a solution $y=0$ called {\itshape the trivial solution}.
\end{document}

答案1

align与 一起使用\intertext( 的两个功能amsmath

\documentclass[12pt]{article}
\usepackage{amsmath,amsthm,amssymb}
\begin{document}
Consider the \textit{homogeneous} linear differential equation
\begin{align}
    \tag{H}
    \label{eq:H2}
    y''+p(x)y'+q(x)y &= 0
\intertext{and \textit{nonhomogeneous} linear differential equation}
    \tag{NH}
    \label{eq:NH2}
    y''+p(x)y'+q(x)y &= f(x)
\end{align}
where $p(\cdot)$, $q(\cdot)$, and $f(\cdot)$ be continuous functions on some
open interval $(a,b)$. The homogeneous equation \eqref{eq:H2} always have a
solution $y=0$ called \textit{the trivial solution}.
\end{document}

在此处输入图片描述

(我用 代替{\itshape...}\textit{...},但这只是我的口味。)

相关内容