使用 Gather 和 Split 进行居中子步骤

使用 Gather 和 Split 进行居中子步骤

我对 Latex 还比较陌生,到目前为止,我只能通过四处搜索来解决问题,但我目前尝试实现的代码正在做一些我无法预测的事情。.tex 文件如下:

\documentclass[a4paper,11pt]{article}
\usepackage{fancyhdr,graphics,graphicx,xy, titling}
\usepackage{ifthen}
\usepackage{amssymb,amsmath,mathtools,bm, amsthm}
\title{\vspace{50mm}\textbf{Assignment 5}: Question 1}
\author{Example Name : ID 260847409}
\date{October 13, 2020}
\pagestyle{fancy}
\setlength{\headheight}{15pt}
\lhead{Example Name}
\chead{Question 1}
\rhead{Student ID: 260847409}
\cfoot{\thepage}
\usepackage{etoolbox}
\AtBeginEnvironment{gather}{\setcounter{equation}{0}}
%%%%%%%%%% START OF MAIN DOCUMENT %%%%%%
\begin{document}
    \begin{titlepage}
        \maketitle
        \thispagestyle{empty}
    \end{titlepage}
    \textbf{Question 1.A}    
    \begin{gather}
        a_{n+1} = 4a_n-3a_{n-1} \text{ where: $a_0 = 0$ and $a_1 = 1$} \\
        a_{n+1} - 4a_n + 3a_{n-1} = 0 \\
        \text{Substitute $a_n$ for $q^n$: } q^2 -4q + 3 = 0 \\
        (q^2 - q)+(-3q + 3) = 0 \\
        q(q-1) -3(q-1) \\
        (q-3)(q-1) \text{ so $q = 1, q = 3$} \\
        \begin{split}
            \\ a_n = a(1)^n +b(3)^n \\
            n = 0: a + b = 0 \\
            n = 1: a(1) + b(3) = 1 \\   
        \end{split} \\
        \begin{split} \\
           n = 0: a + b = 0 \\
           n = 1: a + 3b = 1 \\
           -2b = -1 \\
           b = 0.5 \\
           a + 0.5 = 0 \\
           a = - 0.5 \\ \\
        \end{split} \\
        a_n = -0.5 + 0.5(3)^n
\end{gather}
    \newpage
\textbf{Question 1.B}
\begin{gather}
    b_{n+1} = 4b_n - 4b_{n-1} \text{ where: $b_0 = 1$ and $b_1 = 1$} \\
    b_{n+1} - 4b_n + 4b_{n-1} = 0 \\
    \text{Substitute $b_n$ for $q^n$: } q^2 -4q + 4 = 0 \\
    (q-2)^2 = 0, \text{ so $q = 2$} \\
    \begin{split} \\
        \text{Take the derivative of the original equation to find new recurrence:} \\
        \text{Derivative of } q^{n+1}-4q^n+4q^{n-1} \\
        (n+1)q^n-4nq^{n-1}+4(n-1)q^{n-2} \\
        (q^n - 4q^{n-1} + 4q^{n-2}) + (nq^n - 4((n-1)q^{n-1}) + 4((n-2)q^{n-2})) \\
        n*2^n = 4(n-1)2^{n-1}-4(n-2)2^{n-2} \\ \\
    \end{split} \\
    \text{Therefore: $P_n=2^n$ and $Q_n = n*2^n$} \\ 
\end{gather}
\end{document}

输出以下视觉效果:在此处输入图片描述

我不太清楚为什么问题 1.B 中的拆分实例会这样对齐,因为它在问题 1.A 中运行良好。顺便说一句,如果有一种方法可以代替通过单个数字通知整个步骤集,我可以执行 7.1、7.2、7.3(例如问题 1A),那将不胜感激。

答案1

split我宁愿使用。gathered对于文本的推导,更适合使用\intertextshortintertext

\documentclass[a4paper,11pt]{article}
\usepackage{fancyhdr}
\pagestyle{fancy}
\setlength{\headheight}{15pt}
\lhead{Example Name}
\chead{Question 1}
\rhead{Student ID: 260847409}
\cfoot{\thepage}
\usepackage{graphicx, xy}

\usepackage{ifthen}
\usepackage{mathtools, amssymb, amsthm, bm}
\usepackage{titling}
\title{\vspace{50mm}\textbf{Assignment 5}: Question 1}
\author{Example Name : ID 260847409}
\date{October 13, 2020}

\usepackage{etoolbox}
\AtBeginEnvironment{gather}{\setcounter{equation}{0}}

%%%%%%%%%% START OF MAIN DOCUMENT %%%%%%
\begin{document}
    \begin{titlepage}
    \maketitle
    \thispagestyle{empty}
    \end{titlepage}
    
\textbf{Question 1.A}
    \begin{gather}
        a_{n+1} = 4a_n-3a_{n-1} \text{ where: $a_0 = 0$ and $a_1 = 1$} \\
        a_{n+1} - 4a_n + 3a_{n-1} = 0 \\
\intertext{Substitute $a_n$ for $q^n$:} 
        q^2 -4q + 3 = 0 \\
        (q^2 - q)+(-3q + 3) = 0 \\
        q(q-1) -3(q-1) \\
        (q-3)(q-1) \longrightarrow q = 1,\; q = 3   \\[2ex]
        \begin{gathered}
            a_n = a(1)^n +b(3)^n \\
            n = 0: a + b = 0    \\
            n = 1: a(1) + b(3) = 1  
        \end{gathered}                              \\[2ex]
        \begin{gathered}
           n = 0: a + b = 0 \\
           n = 1: a + 3b = 1 \\
           -2b = -1 \\
           b = 0.5 \\
           a + 0.5 = 0 \\
           a = - 0.5 \\
        \end{gathered}                              \\[2ex]
        a_n = -0.5 + 0.5(3)^n
\end{gather}

\newpage
\textbf{Question 1.B}
        \begin{gather}
    b_{n+1} = 4b_n - 4b_{n-1} \text{ where: $b_0 = 1$ and $b_1 = 1$} \\
    b_{n+1} - 4b_n + 4b_{n-1} = 0 \\
\intertext{Substitute $b_n$ for $q^n$: } 
     q^2 -4q + 4 = 0 \\
    (q-2)^2 = 0, \text{ so $q = 2$}     \\[2ex]
\intertext{Take the derivative of the original equation to find new recurrence. Derivative of $q^{n+1}-4q^n+4q^{n-1}$ is:}
\begin{gathered}
        (n+1)q^n-4nq^{n-1}+4(n-1)q^{n-2} \\
        (q^n - 4q^{n-1} + 4q^{n-2}) + (nq^n - 4((n-1)q^{n-1}) + 4((n-2)q^{n-2})) \\
        n*2^n = 4(n-1)2^{n-1}-4(n-2)2^{n-2} 
    \end{gathered}                      
\shortintertext{Therefore:}
    P_n=2^n \text{ and } Q_n = n*2^n
    \end{gather}
\end{document}

在此处输入图片描述

相关内容