我正在尝试做一些类似于图片中证明的事情,其中证明步骤之间存在差距。我尝试了 bussproofs-extra 包,但它不允许我将两个推理中的点聚合到一个推理中(即类似于 BinaryInf,但点从两个 UnaryInf 指向它)。任何帮助都将不胜感激!
例如,没有点的样本将如下所示:
\documentclass{article}
\usepackage{bussproofs}
\usepackage{tikz}
\usepackage{bussproofs-extra}
\usepackage{amssymb,amsmath}
\begin{document}
\begin{prooftree}
\def\fCenter{\mbox{\ $\vdash$\ }}
\AxiomC{}
\UnaryInf$\Gamma, \varphi \fCenter \Delta$
\AxiomC{}
\UnaryInf$\Gamma\fCenter \varphi, \Delta$\RightLabel{\scriptsize Cut}
\BinaryInf$ \Gamma \fCenter \Delta$
\end{prooftree}
\end{document}
答案1
我已通过 Twitter 收到答复——感谢 Shawn Standefer!具体做法如下:
\documentclass{article}
\usepackage{bussproofs}
\usepackage{tikz}
\usepackage{bussproofs-extra}
\usepackage{amssymb,amsmath}
\begin{document}
\begin{prooftree}
\def\fCenter{\mbox{\ $\vdash$\ }}
\AxiomC{}\LeftLabel{\scriptsize $\square$}\RightLabel{\scriptsize $n$}
\UnaryInfC{$\Gamma \fCenter \varphi$}
\AxiomC{}\LeftLabel{\scriptsize $\square$}\RightLabel{\scriptsize $n$}
\UnaryInfC{$\Delta, \varphi \fCenter \psi$}
\noLine
\BinaryInfC{$\ddots\ \ \ \reflectbox{$\ddots$}$}
\noLine
\UnaryInfC{$\vdots$}
\noLine
\UnaryInfC{$\Gamma, \Delta \fCenter \psi$}\RightLabel{\scriptsize Cut-Un-I, $n$}
\UnaryInfC{$\Gamma, \Delta \fCenter Un(\ulcorner \varphi \urcorner)$}
\end{prooftree}
\end{document}
它需要 reflectbox 并将其用作二元推理。noLine 只是删除了推理的水平线。