有没有办法将第二列普遍化析取与下一行定理类环境对齐?
\usepackage{amsmath, amssymb, amsthm}
\newtheoremstyle{exercise}
{\topsep} % above space
{\topsep} % below space
{\itshape} % body font
{0pt} % indent
{\bfseries} % head font
{} % head punctuation
{5pt plus 1pt minus 1pt} % HEADSPACE
{} % CUSTOM-HEAD-SPEC
\theoremstyle{exercise}
\newtheorem{provlinje}{~}
\renewcommand*{\theprovlinje}{\alph{provlinje}}
\begin{document}
\textit{Prooflines}
\begin{provlinje}
$\forall x\alpha(x)$
\end{provlinje}
\begin{provlinje}
$\forall x(\alpha(x)\vee\beta(x))$
\end{provlinje}
\begin{provlinje}
$\forall x(\alpha(x)\vee\beta(x)\vee\gamma(x))$
\end{provlinje}
\begin{provlinje}
$\forall x(\alpha(x)\vee\beta(x)\vee\gamma(x)\vee\delta(x))$
\end{provlinje}
\begin{provlinje}
$\forall x(\alpha(x)\vee\beta(x)\vee\gamma(x)\vee\delta(x)\vee\epsilon(x))$
\end{provlinje}
\begin{provlinje}
$\forall x(\alpha(x)\vee\beta(x)\vee\gamma(x)\vee\delta(x)\vee\epsilon(x)\vee\zeta(x))$
\end{provlinje}
\begin{provlinje}
$\forall x(\alpha(x)\vee\beta(x)\vee\gamma(x)\vee\delta(x)\vee\epsilon(x)\vee\zeta(x)\vee\eta(x))$
\end{provlinje}
\begin{provlinje}
$\forall x(\alpha(x)\vee\beta(x)\vee\gamma(x)\vee\delta(x)\vee\epsilon(x)\vee\zeta(x)\vee\eta(x)\vee\theta(x))$
\end{provlinje}
\begin{provlinje}
$\forall x(\alpha(x)\vee\beta(x)\vee\gamma(x)\vee\delta(x)\vee\epsilon(x)\vee\zeta(x)\vee\eta(x)\vee\theta(x)\vee\iota(x))$
\end{provlinje}
\end{document} ```
答案1
正如我在评论中所说,我会使用enumerate
环境。加载enumitem
包可提供最大的灵活性。
\documentclass{article}
\usepackage{enumitem}
\begin{document}
\noindent\textit{Prooflines}
\begin{enumerate}[label=\textbf{\alph*},align=left,ref=\textbf{BLA\alph*}]
\item $\forall x \; \phantom( \alpha(x)$
\item $\forall x \; (\alpha(x)\vee\beta(x))$\label{foo}
\item $\forall x \; (\alpha(x)\vee\beta(x)\vee\gamma(x))$
\item $\forall x \; (\alpha(x)\vee\beta(x)\vee\gamma(x)\vee\delta(x))$
\item $\forall x \; (\alpha(x)\vee\beta(x)\vee\gamma(x)\vee\delta(x)\vee\epsilon(x))$
\item $\forall x \; (\alpha(x)\vee\beta(x)\vee\gamma(x)\vee\delta(x)\vee\epsilon(x)\vee\zeta(x))$
\item $\forall x \; (\alpha(x)\vee\beta(x)\vee\gamma(x)\vee\delta(x)\vee\epsilon(x)\vee\zeta(x)\vee\eta(x))$
\item $\forall x \; (\alpha(x)\vee\beta(x)\vee\gamma(x)\vee\delta(x)\vee\epsilon(x)\vee\zeta(x)\vee\eta(x)\vee\theta(x))$
\item $\forall x \; (\alpha(x)\vee\beta(x)\vee\gamma(x)\vee\delta(x)\vee\epsilon(x)\vee\zeta(x)\vee\eta(x)\vee\theta(x)\vee\iota(x))$
\end{enumerate}
See step \ref{foo}.
\end{document}